scholarly journals Retraction notice to “Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash” [JCBM 114 (2016) 656–664]

2021 ◽  
Vol 304 ◽  
pp. 124712
Author(s):  
Ehsan Mohseni ◽  
Farzad Naseri ◽  
Ramin Amjadi ◽  
Mojdeh Mehrinejad Khotbehsara ◽  
Malek Mohammad Ranjbar
2016 ◽  
Vol 114 ◽  
pp. 656-664 ◽  
Author(s):  
Ehsan Mohseni ◽  
Farzad Naseri ◽  
Ramin Amjadi ◽  
Mojdeh Mehrinejad Khotbehsara ◽  
Malek Mohammad Ranjbar

2014 ◽  
Vol 600 ◽  
pp. 240-249
Author(s):  
Everton Jose da Silva ◽  
Maria Lidiane Marques ◽  
Antonio Rogério B. Vasconcelos ◽  
Jorge L. Akasaki ◽  
Mauro M. Tashima ◽  
...  

Nowadays, the reuse of waste products in the construction process is a priority research area. Several industrial and agricultural waste products have been investigated, such as fly ash, sugar cane bagasse ash and rice husk ash. This paper analyzes a very important aspect under intense discussion in the scientific community: the Rice Husk Ash (RHA) grinding process. This paper investigates a low carbon RHA with high pozzolanic reactivity produced under uncontrolled burning conditions. The compressive strength of mortar specimens prepared using both ground and natural RHA were tested for 3-56 days and the capillarity absorption was measured for mortars cured during 28 days. Very promising and interesting results were obtained using natural rice husk ash in the production of blended mortars.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
David O. Nduka ◽  
Babatunde J. Olawuyi ◽  
Olabosipo I. Fagbenle ◽  
Belén G. Fonteboa

The present study examines the durability properties of Class 1 (50–75 MPa) high-performance concrete (HPC) blended with rice husk ash (RHA) as a partial replacement of CEM II B-L, 42.5 N. Six HPC mixes were prepared with RHA and used as 5%, 10%, 15%, 20%, 25%, and 30% of CEM II alone and properties are compared with control mix having only CEM II. The binders (CEM II and RHA) were investigated for particle size distribution (PSD), specific surface area (SSA), oxide compositions, mineralogical phases, morphology, and functional groups using advanced techniques of laser PSD, Brunauer–Emmett–Teller (BET), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared/attenuated total reflection (FTIR/ATR), respectively, to understand their import on HPC. Durability properties, including water absorption, sorptivity, and chemical attack of the HPC samples, were investigated to realise the effect of RHA on the HPC matrix. The findings revealed that the durability properties of RHA-based HPCs exhibited an acceptable range of values consistent with relevant standards. The findings established that self-produced RHA would be beneficial as a cement replacement in HPC. As the RHA is a cost-effective agro-waste, a scalable product of RHA would be a resource for sustainable technology.


Sign in / Sign up

Export Citation Format

Share Document