Creep deformation characteristics of rubberised structural concrete

2021 ◽  
Vol 312 ◽  
pp. 125418
Author(s):  
M. Otieno ◽  
K. Mushunje
Author(s):  
J. Zrník ◽  
Z. G. Wang ◽  
Y. Yu ◽  
J. A. Wang ◽  
M. Žitňanský ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1266
Author(s):  
Kang Wu ◽  
Jianzhong Lou ◽  
Chen Li ◽  
Wei Luo ◽  
Congcong Li ◽  
...  

The fragile structure of a rootstock predisposes the stem to mechanical damage during grafting. Thus, it is necessary to take into account the rootstock’s rheological properties under mechanical compression when designing a clamping mechanism. This study focused on cucurbit, a typical rootstock for watermelon grafting. Firstly, we adopted a four-element Burgers model to analyze viscoelastic behavior and deformation characteristics of the rootstock, then conducted creep tests to obtain the parameters of the viscoelastic model. Next, we developed a model for the rootstock during holding based on viscoelastic parameters, loading force and contact time. Moreover, we evaluated the effect of various loading forces and test velocities on creep deformation to reveal the least damage on the rootstock. Results showed that the influence of loading force on the creep deformation was greater than test velocity. Finally, the holding test indicated that the clamping mechanism with silicone rubber can effectively prevent the damage to the stem. Specifically, the loading force should be controlled below 4 N to reduce the associated damage. Taken together, our findings provide a theoretical basis for analyzing the holding damage mechanism during watermelon grafting.


2019 ◽  
Vol 33 (10) ◽  
pp. 4813-4821 ◽  
Author(s):  
Van Hung Dao ◽  
Jung Soo Song ◽  
Joo Yong Kim ◽  
Kee Bong Yoon

Author(s):  
Yang Xiao ◽  
Haiqin Qin ◽  
Kejun Xu ◽  
Yongqi Wang

The fatigue-creep deformation characteristics and evolutions of microstructure of P/M superalloy FGH96 widely used for the turbine disc of an aero-engine were investigated experimentally. The low cycle fatigue-creep tests with different holding times were performed at 550℃. The influence of the holding time on the stress-strain curve, cyclic strain response, fatigue-creep life and damage mechanism were discussed. The results reveal that the holding time has a significant effect on the fatigue-creep deformation characteristics. As the holding time increases, the hysteretic energy of inelastic strain rises, the steady-state hysteresis curve shifts to the right and the envelope strain and the envelope strain rate increase. Fatigue-creep life decreases firstly exponentially and then stabilizes. The creep damage gradually plays a leading role. The fracture analysis indicates that the introduction of the holding time makes the section appear as a multi-crack source. The fracture mode changes from transgranular fracture to transgranular-intergranular mixed fracture. The slip bands and a small amount of dimples appear in the crack propagation zone and the dimple characteristics of the transient fracture zone are obvious.


Sign in / Sign up

Export Citation Format

Share Document