Cyclic Creep Deformation Characteristics Of Single Crystal Of Nickle Basesuperalloy CMSX 3

Author(s):  
J. Zrník ◽  
Z. G. Wang ◽  
Y. Yu ◽  
J. A. Wang ◽  
M. Žitňanský ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Liwu Jiang ◽  
Yu Yang ◽  
Meiling Wu ◽  
Min Cai

The creep behaviors of Ni3Al-based single crystal alloy IC6SX with [001] and [111] orientations under the condition of 850°C/450 MPa were investigated. The effect of crystal orientation on the creep lives, fracture morphology, fracture mechanism, and dislocation evolution of the alloys with different orientations was analyzed systematically. The results showed that the creep lives of the alloy were closely related to the crystal orientation under the condition of 850°C/450 MPa. The creep lives of the single crystal alloys with [001] and [111] orientations were 56.3 h and 126.9 h, respectively. Moreover, the fracture morphologies of the two alloys with [001] and [111] orientations were different. The results showed that some holes formed at the fracture surface of the alloy with [111] rather than [001] orientation. Furthermore, the surface near the fracture of the two alloys with [001] and [111] orientations was serrated. Therefore, the fracture mechanism of the single crystal alloys with [001] and [111] orientations was ductile fracture. In addition, a large number of dislocations cut into the γ ′ phase. Therefore, the cutting mechanism of dislocations in the alloys with [001] and [111] orientations was the creep deformation mechanism.


Author(s):  
Pamela Henderson ◽  
Jacek Komenda

The use of single crystal (SX) nickel-base superalloys will increase in the future with the introduction of SX blades into large gas turbines for base-load electricity production. Prolonged periods of use at high temperatures may cause creep deformation and the assessment of damage can give large financial savings. A number of techniques can be applied for life assessment, e.g. calculations based on operational data, non-destructive testing or material interrogation, but because of the uncertainties involved the techniques are often used in combination. This paper describes a material interrogation (metallographic) technique for creep strain assessment in SX alloys. Creep tests have been performed at 950°C on the SX alloy CMSX-4 and quantitative microstructural studies performed on specimens interrupted at various levels of strain. It was found that the strengthening γ′-particles, initially cuboidal in shape, coalesced to form large plates or rafts normal to the applied stress. The γ-matrix phase also formed plates. CMSX-4 contains ∼ 70 vol % γ′-particles and after creep deformation the microstructure turned itself inside out, i.e. the gamma “matrix” became the isolated phase surrounded by the γ′-“particles”. This can cause problems for computerised image analysis, which in this case, were overcome with the choice of a suitable measurement parameter. The rafts reached their maximum length before 2% strain, but continued to thicken with increasing strain. Although of different dimensions, the aspect ratios (length/thickness ratio) of the gamma-prime rafts and the gamma plates were similar at similar levels of strain, increasing from ∼1 at zero strain to a maximum of ∼3 at about 1–2 % strain. Analysis of microstructural measurements from rafting studies on SX alloys presented in the literature showed that the aspect ratios of the γ- and γ′-phases were similar and that at a temperature of 950–1000°C a maximum length/thickness ratio of about 2.5–3.5 is reached at 1 to 2% creep strain. Measurement of gamma-prime raft or (or gamma plate) dimensions on longitudinal sections of blades is thus a suitable method for high temperature creep damage assessment of SX alloys. This gives a considerable advantage over conventional Ni-base superalloys whose microstructures are usually very stable with respect to increasing creep strain.


2009 ◽  
Vol 57 (4) ◽  
pp. 1078-1085 ◽  
Author(s):  
Toru Inoue ◽  
Katsushi Tanaka ◽  
Hiroki Adachi ◽  
Kyosuke Kishida ◽  
Norihiko L. Okamoto ◽  
...  

1973 ◽  
Vol 40 (4) ◽  
pp. 928-934 ◽  
Author(s):  
J. J. Williams ◽  
F. A. Leckie

A method is proposed for estimating structural creep deformation due to histories of cyclic proportional loading. The method applies to structures composed of materials whose creep strain due to constant uniaxial stress is given by an equation of the form ε(t)/ε0={σ/σ0}n{t/t0}m Knowledge of the form of the creep law for time-varying stress is not required, as use is made of an effective stress obtained from a single cyclic creep test.


Sign in / Sign up

Export Citation Format

Share Document