Formulation of a truss element for modelling the tensile response of FRCM strips

Author(s):  
Giovanni Minafò ◽  
Maria Concetta Oddo ◽  
Lidia La Mendola
2021 ◽  
Vol 108 ◽  
pp. 102451
Author(s):  
Xiaohua Zhu ◽  
Qinglong Lei ◽  
Yu Meng ◽  
Xiaoxuan Cui

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.


2021 ◽  
Vol 10 ◽  
pp. 205-215
Author(s):  
Kyu-Sik Kim ◽  
Young-Kyun Kim ◽  
Hyeon-Jin Kim ◽  
Jeoung Han Kim ◽  
Kee-Ahn Lee

1993 ◽  
Vol 115 (3) ◽  
pp. 314-318 ◽  
Author(s):  
S. M. Spearing ◽  
F. W. Zok

A computer simulation of multiple cracking in fiber-reinforced brittle matrix composites has been conducted, with emphasis on the role of the matrix flaw distribution. The simulations incorporate the effect of bridging fibers on the stress required for cracking. Both short and long (steady-state) flaws are considered. Furthermore, the effects of crack interactions (through the overlap of interface slip lengths) are incorporated. The influence of the crack distribution on the tensile response of such composites is also examined.


Sign in / Sign up

Export Citation Format

Share Document