Calculation method for the axial load-bearing capacity of steel pipe-to-sleeve grouted connections

2022 ◽  
Vol 314 ◽  
pp. 125621
Author(s):  
Liwei Wu ◽  
Xueyuan Guo ◽  
Haibin Chen ◽  
Junyang Liu ◽  
Youpo Su
2018 ◽  
Vol 15 (5) ◽  
pp. 760-773 ◽  
Author(s):  
V. A. Utkin ◽  
P. N. Kobzev ◽  
E. G. Shatunova

Introduction. Experience in the design and construction of beam structures of wooden bridges with composite girders indicates the possibility of increasing the bearing capacity and the length of the overlapped spans.Materials and methods. The most rational load-bearing elements of composite girders can serve as the logs edged on two edges with the diameter of 28 to 32 cm with the maximum use of the most durable layers of sapwood and dowel connections of steel plates with blind cylindrical nags.Results. In contrast to the compounds of composite girders on lamellar nails, the proposed connection greatly simplifies the process of making the composite girders. Such connection also allows using the logging along the length, combining into three or four tiers and increasing the length of the span.Discussion and conclusion. The proposed solutions increase the load-bearing capacity of composite girders and allow them to be used in the structures of wooden bridges under modern automotive loads. Moreover, the calculation method of composite girders on the basis of the method of forces and discrete placement in the beams between the logs of concentrated elastic-datum shear bonds is developed.


2012 ◽  
Vol 204-208 ◽  
pp. 995-998
Author(s):  
Yun Yun Li ◽  
Bao Sheng Yang

This paper studies the working mechanism, ductility, and ultimate load bearing capacity of the composite columns through axial load bearing capacity experiments on eight steel skeleton-steel pipes reinforced composite concrete columns. The results show that the collaborative work between the steel pipe, steel skeleton and concrete can effectively improve the bearing capacity of the column, delay or inhibit the spread of shear diagonal cracks in the concrete and improve the ductility of the column. In addition, the finite element software ANSYS is used to digitally simulate the whole process of axial pressure test, and the resulting load-displacement curves and experimental curves agree fairly well.


2021 ◽  
pp. 136943322110159
Author(s):  
Bo Wu ◽  
Zhikai Wei

Recycled lump concrete (RLC) made with demolished concrete lumps (DCLs) and fresh concrete (FC) provides a solution for effective waste concrete recycling. To promote the development of precast RLC structures, this study tested a new type of connection for precast concrete columns: connecting the upper and the lower halves of columns with bent longitudinal reinforcements and structural adhesive. In this work the behavior of precast RLC columns with the new connection was studied under axial compression. The axial compressive strength of nine two-part columns was tested. The effects of the degree of bending in the longitudinal reinforcement, the replacement ratio of DCLs and the stirrup spacing were investigated. Tests showed that: (1) the failure mode of precast concrete columns is different from that of cast-in-place columns; (2) when the strength of the waste concrete is close to that of the fresh material, there is no significant difference in the axial compression performance of either precast or cast-in-place columns; (3) the bent longitudinal reinforcement causes the axial load bearing capacity of precast concrete columns to be 4.2%–12.3% lower than that of a similar cast-in-place column; (4) reducing the stirrup spacing has little effect on a precast column’s axial load bearing capacity and ductility; (5) when using Chinese and American codes to predict the axial load bearing capacity of the column, the predicted value should be multiplied by a reduction factor.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-14
Author(s):  
Meijing Hao ◽  
Wenzhong Zheng ◽  
Wei Chang

The objective of this study is to evaluate the axial load-bearing capacity of section-enlargement concrete columns. To reach the objection, a new strengthened method in which columns are jacketed with a large welded octagonal stirrup at the center and four spiral stirrups at the corners of column is developed. The new section-enlargement method avoids interrupting existing columns and improves the reliability of strengthened part, besides, the confining stress generated by octagonal stirrup and spiral stirrups enhances the compressive strength and deformability of strengthened columns. In addition, sixteen large-scale concrete columns strengthened by the new strengthened method were tested under axial compressive loads. The experimental results show that the axial compression ratio of existing column generates stressstrain lag in strengthened part and decreases the load-bearing capacity of specimens; the stirrups in strengthened part significantly enhance the axial load-bearing capacity of specimens. According to confinement conditions, the cross-section of specimens is divided into five parts and the confinement factor for each part is calculated to establish the prediction models for the load-bearing capacity of specimens. Furthermore, by comparing the results between the developed model and existing models, the developed model has high accuracy in evaluating the load-bearing capacity of strengthened columns.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hongmeng Huang ◽  
Lu Cui ◽  
Wei Lu

The thickness, reinforcement, and concrete strength grade of railway caps in China are generally determined according to the force, yet the method for calculating the force is unclear. To date, there is no desirable calculation method for analyzing the caps. Based on the fifteen-pile thick cap of mixed passenger and freight railway, the influencing factors on cap bearing capacity were analyzed using finite element method (FEM). The variations of load-bearing capacity and mechanical behavior of thick cap were characterized by introducing rigid angle α. Results indicated that ultimate load-bearing value of the cap increased linearly with the increase of concrete strength grade, and an increasing load-bearing capacity of the reinforcement distributed in the pile diameter range was larger than that of the uniform reinforcement; when the reinforcement ratio was 0.15%, it increased by 9.3%. The cap showed punching failure when α < 45°. The reaction force at each pile top under vertical load was not equal; thereby, the cap was not absolutely rigid. The principal compressive stress trajectories in the concrete were distributed in the range of connecting the pile and the outer edge of the pier, and the effective tensile stresses in the reinforcement were mainly distributed in the diameter range of pile and pile connection, which is in accord with the stress mode of the ordinary spatial truss model. Based on this, a spatial truss model applicable to the design of railway caps is proposed, and a method for calculating reaction force at pile top and formulas for calculating the bearing capacity of strut and tie were presented. The feasibility of the proposed method was also verified by comparison with FEM results.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelkadir Fellouh ◽  
Abdelkader Bougara ◽  
Paulo Piloto ◽  
Nourredine Benlakehal

PurposeInvestigate the fire performance of eccentrically loaded concrete partially encased column (PEC), using the advanced calculation method (ANSYS 18.2, 2017) and the simple calculation method in Annex G of Eurocode 4 (EN 1994-1-2, 2005). This work examines the influence of a range of parameters on fire behaviour of the composite column including: eccentricity loading, slenderness, reinforcement, fire rating and fire scenario. In this study, ISO-834 (ISO834-1, 1999) was used as fire source.Design/methodology/approachCurrently, different methods of analysis used to assess the thermal behaviour of composite column exposed to fire. Analytical method named simplified calculation methods defined in European standard and numerical simulations named advanced calculation models are treated in this paper.FindingsThe load-bearing capacity of the composite column becomes very weak in the presence of the fire accident and eccentric loading, this recommends to avoid as much as possible eccentric loading during the design of construction building. The reinforcement has a slight influence on the temperature evolution; moreover, the reinforcement has a great contribution on the load capacity, especially in combined compression and bending. When only the two concrete sides are exposed to fire, the partially encased composite column presents a high load-bearing capacity value.Originality/valueThe use of a three-dimensional numerical model (ANSYS) allowed to describe easily the thermal behaviour of PEC columns under eccentric loading with the regard to the analytical method, which is based on three complex steps. In this study, the presence of the load eccentricity has found to have more effect on the load-bearing capacity than the slenderness of the composite column. Introducing a load eccentricity on the top of the column may have the same a reducing effect on the load-bearing capacity as the fire.


Sign in / Sign up

Export Citation Format

Share Document