Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature

2022 ◽  
Vol 316 ◽  
pp. 125884
Author(s):  
Tingcong Wei ◽  
Xiaowei Cheng ◽  
Huiting Liu ◽  
Hua Zhang ◽  
Liwei Zhang ◽  
...  
2011 ◽  
Vol 291-294 ◽  
pp. 1851-1855
Author(s):  
Yue Long ◽  
Yan Shi ◽  
Yun Bo Lei ◽  
Hong Wei Xing ◽  
Jie Li ◽  
...  

Reconstruction of high temperature melting compound steel slag-fly ash can be effectively digest f-CaO in steel slag. The experimental result shows that the f-CaO contents in modified slag is greatly affected by fly ash addition(respectively 5%, 7%, 14%) when the temperature is 1580°C and constant temperature is 30min, the digestion rates are respectively 56.99%,63.69%,68.55%. Modified mineral content of the steel slag changes greatly, mainly reflects at enormous increase in magnetite, dicalcium silicate, tricalcium silicate, wustite and vitreous. By micro-structure analysis of several kinds of modified slag mineral, tricalcium silicate mainly shape for branch of tree, dicalcium silicate is in the form of a circular, wustite and vitreous mainly distribute in aggregation state. The above minerals can increase cementitious activity for modified slag becoming cement.


2021 ◽  
Vol 308 ◽  
pp. 125065
Author(s):  
Tingcong Wei ◽  
Xiaowei Cheng ◽  
Tao Gu ◽  
Sheng Huang ◽  
Chunmei Zhang ◽  
...  

1993 ◽  
Vol 23 (5) ◽  
pp. 1169-1177 ◽  
Author(s):  
S. Masse ◽  
H. Zanni ◽  
J. Lecourtier ◽  
J.C. Roussel ◽  
A. Rivereau

2013 ◽  
Vol 405-408 ◽  
pp. 2564-2575
Author(s):  
Yan Jun Liu ◽  
Yong Chao Zheng

This paper presents a laboratory study on active belite cement clinker using boron oxide as dopant to stabilize high temperature phases of Dicalcium silicate (C2S), and mineral waste as siliceous materials in complete replacement of clay. The clinker samples were soaked in Muffle Furnace at different burning temperatures and for various time durations, and then, cooled down to room temperature using air blower. Quantitative X-ray Diffraction analysis (QXRD) by Rietveld method indicates that major mineral components are Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S) in the cement clinkers. Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Thermogravimetric and Differential Scanning Calorimetric (TGA-DSC) spectrum shows that there is no significant phase change while cement clinker was cooling down, which means significant amount of high temperature polymorphic C2S was stabilized during cooling process. It is agreeable with the results from QXRD analysis. Specifically, among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. In addition, massive belite phase was identified by Scanning Electronic Microscope (SEM) analysis and Light Microscopy analysis. At last, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain at 28 days in comparison with belite clinker without adding boron oxide. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development. Keywords: Active Belite Cement Clinker; Doped; Boron Oxide; αH-C2S; αL-C2S; Strength Development


2012 ◽  
Vol 610-613 ◽  
pp. 2378-2385 ◽  
Author(s):  
Yan Jun Liu ◽  
Yong Chao Zheng

This paper presents a laboratory study on active belite cement linker using mineral waste as one of the major raw meal components. The main chemical component of mineral waste employed in this study is silica (SiO2), around 70%. The raw meals were soaked in Muffle Furnace at 1350oC for 10 minutes and 20minutes respectively, then, cooled down to room temperature using air blower. Boron Oxide was used to stabilize high temperature phases of C2S. QXRD analysis indicates that active belite cement clinker has major mineral components consisting of Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S). Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Also, significant amount of high temperature polymorphic C2S was stabilized under room temperature. Among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. Scanning Eαlectronic Microscope (SEM) analysis also shows coαnsiderable round grains of C2S. TGA-DSC spectrum indicated there is no significant phase change while cement clinker was cooling down. Also, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain over 70Mpa at 28 days. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3885
Author(s):  
Wenhuan Liu ◽  
Hui Li ◽  
Huimei Zhu ◽  
Pinjing Xu

In this paper, a permeable steel-slag–bitumen mixture (PSSBM) was first prepared according to the designed mixture ratio. Then, the interaction characteristics between steel slag and bitumen were studied. The chemical interaction between bitumen and steel slag was explored with a Fourier-transform infrared spectrometer (FT-IR). The influence of steel-slag chemistry, mineral composition, and bitumen reaction on phase angle, complex shear modulus (CSM), and rutting factor was explored with dynamic shear rheological (DSR) tests. The PSSBM had better properties, including high permeability, water stability, Marshall stability, high-temperature (HT) stability, and low volume-expansion rate. Bitumen-coated steel slag can prevent heavy-metal ions from leaching. In the infrared spectra of the mixture of a chemical component of steel slag (calcium oxide) and bitumen, a new absorption peak at 3645 cm−1 was ascribed to the SiO–H stretching vibration, indicating that new organic silicon compounds were produced in the chemical reaction between calcium oxide and bitumen. SiO–H had an obvious enhancement effect on the interfacial adhesion and high-temperature rheological property of the mixture. In the mineral components of steel slag, dicalcium and tricalcium silicate reacted with bitumen and generated new substances. Chemical reactions between tricalcium silicate and bitumen were significant and had obvious enhancement effects on interfacial adhesion and high-temperature rheological properties of the mixture. The results of FT-IR and DSR were basically consistent, which revealed the chemical-reaction mechanism between steel-slag microcomponents and bitumen at the interface. SEM results showed that pits and grooves on the surface of the steel-slag aggregate, and the textural characteristics provide a framework-like function, thus strengthening the strength and adhesion of the steel-slag–bitumen aggregate interface.


1995 ◽  
Vol 92 ◽  
pp. 1861-1866 ◽  
Author(s):  
S Masse ◽  
H Zanni ◽  
J Lecourtier ◽  
JC Roussel ◽  
A Rivereau

2021 ◽  
Vol 1209 (1) ◽  
pp. 012045
Author(s):  
S Ravaszová

Abstract The article deals with a laboratory preparation of triclinic modification of clinker mineral tricalcium silicate. A substantial part of the article is devoted to the technology and technique of firing a sample of tricalcium silicate, which would in the future allow the study of the development of the crystal lattice structure of this clinker mineral at short isothermal durations, in the order of minutes. As part of the research, a small high-temperature experimental furnace was designed and constructed. Based on the results, we can express the suitability and applicability of this furnace for the study of the formation of triclinic tricalcium silicate at short soakings.


Sign in / Sign up

Export Citation Format

Share Document