Crack development of rebar rust in rubberized concrete using mesoscale model

2022 ◽  
Vol 321 ◽  
pp. 126409
Author(s):  
Hao Jin ◽  
Qingrong Tian ◽  
Zheng Li
2020 ◽  
Vol 44 (3) ◽  
pp. 22-36
Author(s):  

Практика показывает, что для сварных конструкций, эксплуатируемых в условиях Крайнего Севера необходимо уделять внимание работоспособности сварных соединений при низких температурах. Металл сварных соединений в процессе воздействия обработки изменяет свои свойства, снижается ударная вязкость, образуется гетерогенная структура с большой степенью разнозернистости. Чтобы оценивать и иметь возможность правильно контролировать термическое воздействие и последствия сварочного процесса, требуется решить задачу аналитического определения ударной вязкости для всех зон сварного соединения. В настоящей статье представлен инженерный метод оценки ударной вязкости, применимый для любой зоны сварного соединения, в которой имеется острый или особый концентратор напряжений – трещина. Разработанный аналитический метод расчета ударной вязкости отражает качественную и количественную картину взаимосвязи структурно-механических характеристик и работы развития трещины в диапазоне температур 77…300 К. Предложенная схематизация зависимости критического коэффициента интенсивности напряжений от температуры позволила найти коэффициенты, характеризующие свойства материала, и выполнить расчеты изменения предела текучести и предела прочности от температуры эксплуатации. Построены графики зависимости работы развития трещины от температуры эксплуатации для сталей 15ГС и 17ГС, сравнение которых с экспериментальными данными показывает удовлетворительное согласование. Найдено, что при напряжениях предела выносливости отношение работы развития трещины к критической длине трещины постоянно, не зависит от температуры и для сталей 15ГС и 17ГС равно около 10. Ключевые слова: ударная вязкость, работа разрушения, коэффициент интенсивности напряжений, трещина, феррито-перлитная сталь, зона термического влияния. For welded structures under operation in the Far North, attention must be paid to the performance of welded joints at low temperatures. The properties of metal of welded joints are changed in the process of treatment, its toughness decreases, and a heterogeneous structure with a large range of different grain sizes is formed. In order to evaluate and be able to correctly control the thermal effect and the consequences of the welding process, it is necessary to solve the problem of analytical determination of impact strength for all zones of the welded joint. The paper presents an engineering method for evaluation of the impact strength applicable to any area of the welded joint in which there is a sharp or super sharp stress concentrator – a crack. The developed analytical method for calculating the impact strength reflects a qualitative and quantitative codependency of structural and mechanical characteristics and the process of crack development in the temperature range of 77–300 K. The proposed schematization of dependence of the critical coefficient of stress intensity on the temperature made it possible to find coefficients characterizing the properties of the material and to perform calculations of changes in yield strength and tensile strength on operating temperature. Graphs of the crack development process dependency on the operating temperature for 15ГС and 17ГС steels were constructed, and their comparison with experimental data displays satisfactory agreement. It was found that at endurance limit stresses, the ratio of the crack development process to the critical crack length is constant, non-dependent on temperature, and is equal to 10 for 15ГС and 17ГС steels. Keywords: impact strength, fracture work, stress intensity factor, crack, ferrite-pearlite steel, heat affected zone, steel tempering.


2021 ◽  
Vol 1067 (1) ◽  
pp. 012004
Author(s):  
Hussein Al-Quraishi ◽  
Aseel Abdulazeez ◽  
Raad Abdulkhudhur

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1099
Author(s):  
Qingqing Chen ◽  
Yuhang Zhang ◽  
Tingting Zhao ◽  
Zhiyong Wang ◽  
Zhihua Wang

The mechanical properties and fracture behaviour of concretes under different triaxial stress states were investigated based on a 3D mesoscale model. The quasistatic triaxial loadings, namely, compression–compression–compression (C–C–C), compression–tension–tension (C–T–T) and compression–compression–tension (C–C–T), were simulated using an implicit solver. The mesoscopic modelling with good robustness gave reliable and detailed damage evolution processes under different triaxial stress states. The lateral tensile stress significantly influenced the multiaxial mechanical behaviour of the concretes, accelerating the concrete failure. With low lateral pressures or tensile stress, axial cleavage was the main failure mode of the specimens. Furthermore, the concretes presented shear failures under medium lateral pressures. The concretes experienced a transition from brittle fracture to plastic failure under high lateral pressures. The Ottosen parameters were modified by the gradient descent method and then the failure criterion of the concretes in the principal stress space was given. The failure criterion could describe the strength characteristics of concrete materials well by being fitted with experimental data under different triaxial stress states.


2021 ◽  
Author(s):  
Thong M. Pham ◽  
Neil Renaud ◽  
Voon‐Loong Pang ◽  
Feng Shi ◽  
Hong Hao ◽  
...  

2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Sign in / Sign up

Export Citation Format

Share Document