Enhancement of anthocyanin biosynthesis in a long-term Vitis vinifera L. callus culture in response to some biotic and abiotic elicitors

2011 ◽  
Vol 22 ◽  
pp. S136
Author(s):  
Raluca Alexandra Mihai ◽  
Aurelia Brezeanu
Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 490
Author(s):  
Martin Sák ◽  
Ivana Dokupilová ◽  
Šarlota Kaňuková ◽  
Michaela Mrkvová ◽  
Daniel Mihálik ◽  
...  

The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.


2012 ◽  
Vol 30 (5) ◽  
pp. 351-361 ◽  
Author(s):  
Pedro Junquera ◽  
José Ramón Lissarrague ◽  
Laura Jiménez ◽  
Rubén Linares ◽  
Pilar Baeza

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 92 ◽  
Author(s):  
Ziguo Zhu ◽  
Guirong Li ◽  
Li Liu ◽  
Qingtian Zhang ◽  
Zhen Han ◽  
...  

In grapevine, the MYB transcription factors play an important role in the flavonoid pathway. Here, a R2R3-MYB transcription factor, VvMYBC2L2, isolated from Vitis vinifera cultivar Yatomi Rose, may be involved in anthocyanin biosynthesis as a transcriptional repressor. VvMYBC2L2 was shown to be a nuclear protein. The gene was shown to be strongly expressed in root, flower and seed tissue, but weakly expressed during the fruit development in grapevine. Overexpressing the VvMYBC2L2 gene in tobacco resulted in a very marked decrease in petal anthocyanin concentration. Expression analysis of flavonoid biosynthesis structural genes revealed that chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR) and UDP glucose flavonoid 3-O-glucosyl transferase (UFGT) were strongly down-regulated in the VvMYBC2L2-overexpressed tobacco. In addition, transcription of the regulatory genes AN1a and AN1b was completely suppressed in transgenic plants. These results suggested that VvMYBC2L2 plays a role as a negative regulator of anthocyanin biosynthesis.


2020 ◽  
pp. 255-262
Author(s):  
M. Gatti ◽  
A. Garavani ◽  
C. Squeri ◽  
T. Frioni ◽  
P. Dosso ◽  
...  

2018 ◽  
Vol 126 ◽  
pp. 83-91 ◽  
Author(s):  
Irene Gouvinhas ◽  
Rafaela A. Santos ◽  
Marcelo Queiroz ◽  
Carla Leal ◽  
Maria José Saavedra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document