scholarly journals The effects of reward and social context on visual processing for perceptual decision-making

2020 ◽  
Vol 16 ◽  
pp. 109-117
Author(s):  
Kentaroh Takagaki ◽  
Kristine Krug
2019 ◽  
Author(s):  
Deborah A. Barany ◽  
Ana Gómez-Granados ◽  
Margaret Schrayer ◽  
Sarah A. Cutts ◽  
Tarkeshwar Singh

AbstractVisual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from the perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (N = 26) moved a robotic manipulandum using right whole-arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a pre-defined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were correlated with a strategy to adjust the movement post-initiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial gaze lags and gains greater during decisions, suggesting that eye movements adapt to perceptual demands for guiding limb movements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands.New and NoteworthyVisual processing for perception and for action are thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception, and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


2018 ◽  
Vol 41 ◽  
Author(s):  
David A. Booth

AbstractSuboptimality of decision making needs no explanation. High-level accounts of suboptimality in diverse tasks cannot add up to a mechanistic theory of perceptual decision making. Mental processes operate on the contents of information brought by the experimenter and the participant to the task, not on the amount of information in the stimuli without regard to physical and social context.


2019 ◽  
Vol 121 (6) ◽  
pp. 1977-1980 ◽  
Author(s):  
Alexander J. Simon ◽  
Jessica N. Schachtner ◽  
Courtney L. Gallen

A large body of work has investigated the effects of attention and expectation on early sensory processing to support decision making. In a recent paper published in The Journal of Neuroscience, Rungratsameetaweemana et al. (Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT. J Neurosci 38: 5632–5648, 2018) found that expectations driven by implicitly learned task regularities do not modulate neural markers of early visual processing. Here, we discuss these findings and propose several lines of follow-up analyses and experiments that could expand on these findings in the broader perceptual decision making literature.


2019 ◽  
Author(s):  
Tiasha Saha Roy ◽  
Bapun Giri ◽  
Arpita Saha Chowdhury ◽  
Satyaki Mazumder ◽  
Koel Das

AbstractUnderstanding how individuals utilize social information while making perceptual decisions and how it affects their decision confidence is crucial in a society. Till date, very little is known about perceptual decision making in humans under the influence of social cues and the associated neural mediators. The present study provides empirical evidence of how individuals get manipulated by social cues while performing a face/car identification task. Subjects were significantly influenced by what they perceived as decisions of other subjects while the cues in reality were manipulated independently from the stimulus. Subjects in general tend to increase their decision confidence when their individual decision and social cues coincide, while their confidence decreases when cues conflict with their individual judgments often leading to reversal of decision. Using a novel statistical model, it was possible to rank subjects based on their propensity to be influenced by social cues. This was subsequently corroborated by analysis of their neural data. Neural time series analysis revealed no significant difference in decision making using social cues in the early stages unlike neural expectation studies with predictive cues. Multivariate pattern analysis of neural data alludes to a potential role of frontal cortex in the later stages of visual processing which appeared to code the effect of social cues on perceptual decision making. Specifically medial frontal cortex seems to play a role in facilitating perceptual decision preceded by conflicting cues.


2020 ◽  
Vol 123 (6) ◽  
pp. 2235-2248
Author(s):  
Deborah A. Barany ◽  
Ana Gómez-Granados ◽  
Margaret Schrayer ◽  
Sarah A. Cutts ◽  
Tarkeshwar Singh

Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


Mindfulness ◽  
2021 ◽  
Author(s):  
Sungjin Im ◽  
Maya A. Marder ◽  
Gabriella Imbriano ◽  
Tamara J. Sussman ◽  
Aprajita Mohanty

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Sign in / Sign up

Export Citation Format

Share Document