scholarly journals Neural Mediators of Altered Perceptual Choice and Confidence Using Social Information

2019 ◽  
Author(s):  
Tiasha Saha Roy ◽  
Bapun Giri ◽  
Arpita Saha Chowdhury ◽  
Satyaki Mazumder ◽  
Koel Das

AbstractUnderstanding how individuals utilize social information while making perceptual decisions and how it affects their decision confidence is crucial in a society. Till date, very little is known about perceptual decision making in humans under the influence of social cues and the associated neural mediators. The present study provides empirical evidence of how individuals get manipulated by social cues while performing a face/car identification task. Subjects were significantly influenced by what they perceived as decisions of other subjects while the cues in reality were manipulated independently from the stimulus. Subjects in general tend to increase their decision confidence when their individual decision and social cues coincide, while their confidence decreases when cues conflict with their individual judgments often leading to reversal of decision. Using a novel statistical model, it was possible to rank subjects based on their propensity to be influenced by social cues. This was subsequently corroborated by analysis of their neural data. Neural time series analysis revealed no significant difference in decision making using social cues in the early stages unlike neural expectation studies with predictive cues. Multivariate pattern analysis of neural data alludes to a potential role of frontal cortex in the later stages of visual processing which appeared to code the effect of social cues on perceptual decision making. Specifically medial frontal cortex seems to play a role in facilitating perceptual decision preceded by conflicting cues.

2019 ◽  
Author(s):  
Deborah A. Barany ◽  
Ana Gómez-Granados ◽  
Margaret Schrayer ◽  
Sarah A. Cutts ◽  
Tarkeshwar Singh

AbstractVisual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from the perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (N = 26) moved a robotic manipulandum using right whole-arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a pre-defined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were correlated with a strategy to adjust the movement post-initiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial gaze lags and gains greater during decisions, suggesting that eye movements adapt to perceptual demands for guiding limb movements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands.New and NoteworthyVisual processing for perception and for action are thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception, and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


2020 ◽  
Vol 13 (6) ◽  
pp. 1689-1696
Author(s):  
Lina Willacker ◽  
Marco Roccato ◽  
Beril Nisa Can ◽  
Marianne Dieterich ◽  
Paul C.J. Taylor

Author(s):  
Jacobo Fernandez-Vargas ◽  
Christoph Tremmel ◽  
Davide Valeriani ◽  
Saugat Bhattacharyya ◽  
Caterina Cinel ◽  
...  

2019 ◽  
Vol 121 (6) ◽  
pp. 1977-1980 ◽  
Author(s):  
Alexander J. Simon ◽  
Jessica N. Schachtner ◽  
Courtney L. Gallen

A large body of work has investigated the effects of attention and expectation on early sensory processing to support decision making. In a recent paper published in The Journal of Neuroscience, Rungratsameetaweemana et al. (Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT. J Neurosci 38: 5632–5648, 2018) found that expectations driven by implicitly learned task regularities do not modulate neural markers of early visual processing. Here, we discuss these findings and propose several lines of follow-up analyses and experiments that could expand on these findings in the broader perceptual decision making literature.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tarryn Balsdon ◽  
Pascal Mamassian ◽  
Valentin Wyart

Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here, we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with the computation of confidence, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for evaluating perceptual decision confidence.


2018 ◽  
Vol 115 (7) ◽  
pp. E1588-E1597 ◽  
Author(s):  
Brian Odegaard ◽  
Piercesare Grimaldi ◽  
Seong Hah Cho ◽  
Megan A. K. Peters ◽  
Hakwan Lau ◽  
...  

Recent studies suggest that neurons in sensorimotor circuits involved in perceptual decision-making also play a role in decision confidence. In these studies, confidence is often considered to be an optimal readout of the probability that a decision is correct. However, the information leading to decision accuracy and the report of confidence often covaried, leaving open the possibility that there are actually two dissociable signal types in the brain: signals that correlate with decision accuracy (optimal confidence) and signals that correlate with subjects’ behavioral reports of confidence (subjective confidence). We recorded neuronal activity from a sensorimotor decision area, the superior colliculus (SC) of monkeys, while they performed two different tasks. In our first task, decision accuracy and confidence covaried, as in previous studies. In our second task, we implemented a motion discrimination task with stimuli that were matched for decision accuracy but produced different levels of confidence, as reflected by behavioral reports. We used a multivariate decoder to predict monkeys’ choices from neuronal population activity. As in previous studies on perceptual decision-making mechanisms, we found that neuronal decoding performance increased as decision accuracy increased. However, when decision accuracy was matched, performance of the decoder was similar between high and low subjective confidence conditions. These results show that the SC likely signals optimal decision confidence similar to previously reported cortical mechanisms, but is unlikely to play a critical role in subjective confidence. The results also motivate future investigations to determine where in the brain signals related to subjective confidence reside.


2020 ◽  
Vol 123 (6) ◽  
pp. 2235-2248
Author(s):  
Deborah A. Barany ◽  
Ana Gómez-Granados ◽  
Margaret Schrayer ◽  
Sarah A. Cutts ◽  
Tarkeshwar Singh

Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


2017 ◽  
Author(s):  
Brian Odegaard ◽  
Piercesare Grimaldi ◽  
Seong Hah Cho ◽  
Megan A.K. Peters ◽  
Hakwan Lau ◽  
...  

AbstractRecent studies suggest that neurons in sensorimotor circuits involved in perceptual decision-making also play a role in decision confidence. In these studies, confidence is often considered to be an optimal readout of the probability that a decision is correct. However, the information leading to decision accuracy and the report of confidence often co-varied, leaving open the possibility that there are actually two dissociable signal types in the brain: signals that correlate with decision accuracy (optimal confidence) and signals that correlate with subjects’ behavioral reports of confidence (subjective confidence). We recorded neuronal activity from a sensorimotor decision area, the superior colliculus (SC) of monkeys, while they performed two different tasks. In our first task, decision accuracy and confidence co-varied, as in previous studies. In our second task, we implemented a novel motion discrimination task with stimuli that were matched for decision accuracy but produced different levels of confidence as reflected by behavioral reports. We used a multivariate decoder to predict monkeys’ choices from neuronal population activity. As in previous studies on perceptual decision-making mechanisms, we found that neuronal decoding performance increased as decision accuracy increased. However, when decision accuracy was matched, performance of the decoder was similar between high and low subjective confidence conditions. These results show that the SC likely signals optimal decision confidence similar to previously reported cortical mechanisms, but is unlikely to play a critical role in subjective confidence. The results also motivate future investigations to determine where in the brain signals related to subjective confidence reside.Significance StatementConfidence is thought to reflect the rational or optimal belief concerning one’s choice accuracy. Here, we introduce a novel version of the dot-motion discrimination task with stimulus conditions that produce similar accuracy but different subjective behavioral reports of confidence. We decoded decision performance of this task from neuronal signals in the superior colliculus (SC), a subcortical region involved in decision-making. We found that SC activity signaled a perceptual decision for visual stimuli, with the strength of this activity reflecting decision accuracy, but not the subjective level of confidence as reflected by behavioral reports. These results demonstrate an important role for the SC in perceptual decision-making and challenge current ideas about how to measure subjective confidence in monkeys and humans.


Sign in / Sign up

Export Citation Format

Share Document