Chromium–palladium films on 316L stainless steel by pulse electrodeposition and their corrosion resistance in hot sulfuric acid solutions

2011 ◽  
Vol 53 (11) ◽  
pp. 3788-3795 ◽  
Author(s):  
Liang Xu ◽  
Yu Zuo ◽  
Junlei Tang ◽  
Yuming Tang ◽  
Pengfei Ju
Author(s):  
Wei Han ◽  
Fengzhou Fang

Abstract The study is to investigate the electropolishing characteristics of 316L stainless steel in a sulfuric acid-free electrolyte of phosphoric acid and glycerol and to explore the possibility of using this eco-friendly electrolyte instead of the widely used sulfuric acid-based electrolyte. The influences of process parameters on polishing effects and the corrosion resistance of electropolished samples are investigated. The experimental results show that the electropolishing temperature and acid concentration are directly related to the mass transport mechanism in the limiting current plateau region. The grain boundaries of workpiece were electrochemically dissolved faster than the grain themselves at the beginning of the electropolishing process because they are more reactive than grains. Moreover, the conventional sulfuric—phosphoric acid electrolyte was also used to electropolish the 316L stainless steel, and the electropolished surfaces were compared with the sulfuric acid-free electrolyte proposed in this study. When the sulfuric acid-free electrolyte was used to electropolish the 316L stainless steel, the X-ray photoelectron spectroscopy (XPS) analysis shows that atomic Cr/Fe ratio of 316L stainless steel was increased from 0.802 to 1.909 after electropolishing process in the sulfuric acid-free electrolyte of phosphoric acid and glycerol. The corrosion resistance of the electropolished 316L stainless steel is studied using electrochemical analysis, and the results are verified experimentally.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Nadezhda Eroshkina ◽  
Mikhail Chamurliev ◽  
Mark Korovkin

The effect of mineral additives such as crushed ash and individual building demolition waste on the corrosion resistance of geopolymer concrete based on screening the crushed granite and blast furnace slag in an environment of sulfuric acid solutions was studied. The corrosion resistance of concrete was evaluated by the kinetics of reducing the mass and strength of samples in sulfuric acid solutions with a concentration of 2,5 and 5 % for 10 days. It was shown that replacing 50 % of granite powder with ground crushed bricks or ash significantly increases the corrosion resistance of geopolymer materials. It was established that due to the formation of poorly soluble products of the interaction of sulfuric acid and concrete in the pores of a geopolymer stone, an interface is formed between the undestructed material and the zone subjected to destructive processes, which impedes the penetration of the corrosive medium into the material. The study also conducted comparative studies of the corrosion resistance of Portland cement concrete with various water-cement ratios. The research results showed that under the influence of sulfuric acid in Portland cement concrete this border does not form and a rapid loss of mass and strength occurs in the samples. The established feature of the process of destruction of geopolymer concrete in a solution of sulfuric acid is the reason for its higher resistance in comparison with cement concrete.


Sign in / Sign up

Export Citation Format

Share Document