sintered stainless steel
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7029
Author(s):  
Krzysztof Blauciak ◽  
Pawel Szymanski ◽  
Dariusz Mikielewicz

This paper presents the results of experiments carried out on a specially designed experimental rig designed for the study of capillary pressure generated in the Loop Heat Pipe (LHP) evaporator. The commercially available porous structure made of sintered stainless steel constitutes the wick. Three different geometries of the porous wicks were tested, featuring the pore radius of 1, 3 and 7 µm. Ethanol and water as two different working fluids were tested at three different evaporator temperatures and three different installation charges. The paper firstly presents distributions of generated pressure in the LHP, indicating that the capillary pressure difference is generated in the porous structure. When installing with a wick that has a pore size of 1 μm and water as a working fluid, the pressure difference can reach up to 2.5 kPa at the installation charge of 65 mL. When installing with a wick that has a pore size of 1 μm and ethanol as a working fluid, the pressure difference can reach up to 2.1 kPa at the installation charge of 65 mL. The integral characteristics of the LHP were developed, namely, the mass flow rate vs. applied heat flux for both fluids. The results show that water offers larger pressure differences for developing the capillary pressure effect in the installation in comparison to ethanol. Additionally, this research presents the feasibility of manufacturing inexpensive LHPs with filter medium as a wick material and its influence on the LHP’s thermal performance.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2453
Author(s):  
Kyaw Zin Htoo ◽  
Phuoc Hien Huynh ◽  
Keishi Kariya ◽  
Akio Miyara

In loop heat pipes (LHPs), wick materials and their structures are important in achieving continuous heat transfer with a favorable distribution of the working fluid. This article introduces the characteristics of loop heat pipes with different wicks: (i) sintered stainless steel and (ii) ceramic. The evaporator has a flat-rectangular assembly under gravity-assisted conditions. Water was used as a working fluid, and the performance of the LHP was analyzed in terms of temperatures at different locations of the LHP and thermal resistance. As to the results, a stable operation can be maintained in the range of 50 to 520 W for the LHP with the stainless-steel wick, matching the desired limited temperature for electronics of 85 °C at the heater surface at 350 W (129.6 kW·m−2). Results using the ceramic wick showed that a heater surface temperature of below 85 °C could be obtained when operating at 54 W (20 kW·m−2).


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 41-51
Author(s):  
Barbara LISIECKA ◽  
Agata DUDEK

Sintered stainless steel (SSS) is manufactured using the powder metallurgy technology (PM). SSSs are characterized by a two–phase structure which can be obtained by mixing different proportions of the main structural components (i.e. austenite and ferrite). Taking into account the improvement of functional properties of SSSs, a number of surface modifications have been proposed. This study proposes a method to improve functional properties by formation of chromium carbide coating and alloying the surface by the gas tungsten arc welding (GTAW) process. The results of light optical microscopy and scanning electron microscopy (SEM/EDX), roughness parameters, hardness, and the coefficient of friction are presented.


2019 ◽  
Vol 813 ◽  
pp. 221-227 ◽  
Author(s):  
Zbigniew Brytan ◽  
Wojciech Pakieła

In the present study, sintered austenitic stainless steel type 316L was laser surface alloyed with Inconel 625 powder by the fibre optic laser. The Inconel 625 spheroidal powder of grain size 60-150 μm was introduced by the coaxial feeding head directly to the liquid metal, during laser surface alloying. The process parameters were selected to melt and fully dissolve alloying powder into the alloyed surface. As a result of laser alloying, the porosity of sintered stainless steel was eliminated, a uniform distribution of nickel and molybdenum in the entire alloyed zone was obtained. The alloyed surface shows fully austenitic microstructure of 17%Cr, 18%Ni, 3%Mo. The superficial hardness, microhardness and surface wear resistance were significantly improved in respect to an untreated substrate material. The presented technique of laser surface alloying can be easily applied for sintered austenitic stainless steel components where selected component surfaces require an improved surface performance.


Sign in / Sign up

Export Citation Format

Share Document