Erosion–corrosion resistance of electroplated Co-Pd film on 316L stainless steel in a hot sulfuric acid slurry environment

2015 ◽  
Vol 331 ◽  
pp. 200-209 ◽  
Author(s):  
Sirui Li ◽  
Yu Zuo ◽  
Pengfei Ju
Author(s):  
Wei Han ◽  
Fengzhou Fang

Abstract The study is to investigate the electropolishing characteristics of 316L stainless steel in a sulfuric acid-free electrolyte of phosphoric acid and glycerol and to explore the possibility of using this eco-friendly electrolyte instead of the widely used sulfuric acid-based electrolyte. The influences of process parameters on polishing effects and the corrosion resistance of electropolished samples are investigated. The experimental results show that the electropolishing temperature and acid concentration are directly related to the mass transport mechanism in the limiting current plateau region. The grain boundaries of workpiece were electrochemically dissolved faster than the grain themselves at the beginning of the electropolishing process because they are more reactive than grains. Moreover, the conventional sulfuric—phosphoric acid electrolyte was also used to electropolish the 316L stainless steel, and the electropolished surfaces were compared with the sulfuric acid-free electrolyte proposed in this study. When the sulfuric acid-free electrolyte was used to electropolish the 316L stainless steel, the X-ray photoelectron spectroscopy (XPS) analysis shows that atomic Cr/Fe ratio of 316L stainless steel was increased from 0.802 to 1.909 after electropolishing process in the sulfuric acid-free electrolyte of phosphoric acid and glycerol. The corrosion resistance of the electropolished 316L stainless steel is studied using electrochemical analysis, and the results are verified experimentally.


Wear ◽  
2016 ◽  
Vol 364-365 ◽  
pp. 10-21 ◽  
Author(s):  
M. Lindgren ◽  
S. Siljander ◽  
R. Suihkonen ◽  
P. Pohjanne ◽  
J. Vuorinen

Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract BioDur 316LS stainless steel is a modified version of Type 316L stainless steel to improve corrosion resistance for surgical implant applications. The alloy is vacuum arc remelted. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-596. Producer or source: Carpenter.


Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract EMPIRE IS0-40 is a precipitation-hardenable stainless steel for castings resistant to corrosion, stress-corrosion cracking and erosion-corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-278. Producer or source: Empire Steel Castings Inc..


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract EnduraMet 316LN stainless is a nitrogen strengthened version of Type 316L stainless steel. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1219. Producer or source: Carpenter Technology Corporation.


Sign in / Sign up

Export Citation Format

Share Document