scholarly journals Cortical Networks of Dynamic Scene Category Representation in the Human Brain

Cortex ◽  
2021 ◽  
Author(s):  
Emin Çelik ◽  
Umit Keles ◽  
İbrahim Kiremitçi ◽  
Jack Gallant ◽  
Tolga Çukur
2020 ◽  
Author(s):  
James E. Kragel ◽  
Youssef Ezzyat ◽  
Bradley C. Lega ◽  
Michael R. Sperling ◽  
Gregory A. Worrell ◽  
...  

AbstractEpisodic recall depends upon the reinstatement of cortical activity present during the formation of a memory. We identified dissociable cortical networks via functional connectivity that uniquely reinstated semantic content and temporal context of previously studied stimuli during free recall. Network-specific reinstatement predicted the temporal and semantic organization of recall sequences, demonstrating how specialized cortical systems enable the human brain to target specific memories.


2021 ◽  
Vol 118 (52) ◽  
pp. e2113887118
Author(s):  
Yang Zhang ◽  
Yue Ding ◽  
Juan Huang ◽  
Wenjing Zhou ◽  
Zhipei Ling ◽  
...  

Humans have an extraordinary ability to recognize and differentiate voices. It is yet unclear whether voices are uniquely processed in the human brain. To explore the underlying neural mechanisms of voice processing, we recorded electrocorticographic signals from intracranial electrodes in epilepsy patients while they listened to six different categories of voice and nonvoice sounds. Subregions in the temporal lobe exhibited preferences for distinct voice stimuli, which were defined as “voice patches.” Latency analyses suggested a dual hierarchical organization of the voice patches. We also found that voice patches were functionally connected under both task-engaged and resting states. Furthermore, the left motor areas were coactivated and correlated with the temporal voice patches during the sound-listening task. Taken together, this work reveals hierarchical cortical networks in the human brain for processing human voices.


2010 ◽  
Vol 5 (8) ◽  
pp. 633-633
Author(s):  
G. Avidan ◽  
M. Behrmann

2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


Sign in / Sign up

Export Citation Format

Share Document