scholarly journals Time-discretization of a plasma-neutral MHD model with a semi-implicit leapfrog algorithm

2022 ◽  
pp. 108288
Author(s):  
Sina Taheri ◽  
Jacob R. King ◽  
Uri Shumlak
Author(s):  
Jesús F. Águila ◽  
Vanessa Montoya ◽  
Javier Samper ◽  
Luis Montenegro ◽  
Georg Kosakowski ◽  
...  

AbstractSophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: CORE2DV5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (10−3, 10−5, 10−7 mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of Cs+ with K+ and Na+, nor K+ and Na+ diffusion in the pore water.


Author(s):  
Jonas Zeifang ◽  
Andrea Beck

AbstractConsidering droplet phenomena at low Mach numbers, large differences in the magnitude of the occurring characteristic waves are presented. As acoustic phenomena often play a minor role in such applications, classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction. In this work, a novel scheme based on a specific level set ghost fluid method and an implicit-explicit (IMEX) flux splitting is proposed to overcome this timestep restriction. A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface. In this part of the domain, the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases. It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method. Applications to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.


2021 ◽  
Vol 448 ◽  
pp. 217-227
Author(s):  
Zhenyu Li ◽  
Yunong Zhang ◽  
Liangjie Ming ◽  
Jinjin Guo ◽  
Vasilios N. Katsikis

Author(s):  
A. Carpio ◽  
E. Cebrian

Abstract Hypoxy induced angiogenesis processes can be described by coupling an integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the angiogenic factor. We propose high order positivity preserving schemes to approximate the marginal tip density by combining an asymptotic reduction with weighted essentially non oscillatory and strong stability preserving time discretization. We capture soliton-like solutions representing blood vessel formation and spread towards hypoxic regions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haili Qiao ◽  
Aijie Cheng

AbstractIn this paper, we consider the time fractional diffusion equation with Caputo fractional derivative. Due to the singularity of the solution at the initial moment, it is difficult to achieve an ideal convergence rate when the time discretization is performed on uniform meshes. Therefore, in order to improve the convergence order, the Caputo time fractional derivative term is discretized by the {L2-1_{\sigma}} format on non-uniform meshes, with {\sigma=1-\frac{\alpha}{2}}, while the spatial derivative term is approximated by the classical central difference scheme on uniform meshes. According to the summation formula of positive integer k power, and considering {k=3,4,5}, we propose three non-uniform meshes for time discretization. Through theoretical analysis, different time convergence orders {O(N^{-\min\{k\alpha,2\}})} can be obtained, where N denotes the number of time splits. Finally, the theoretical analysis is verified by several numerical examples.


Author(s):  
Sergio Caucao ◽  
Ivan Yotov

Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $k$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $k$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters.


Sign in / Sign up

Export Citation Format

Share Document