Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography

2006 ◽  
Vol 418 (4-6) ◽  
pp. 540-543 ◽  
Author(s):  
Timothy J.V. Yates ◽  
John Meurig Thomas ◽  
Jose-Jesus Fernandez ◽  
Osamu Terasaki ◽  
Ryong Ryoo ◽  
...  
ACS Nano ◽  
2015 ◽  
Vol 9 (5) ◽  
pp. 5333-5347 ◽  
Author(s):  
Tamar Segal-Peretz ◽  
Jonathan Winterstein ◽  
Manolis Doxastakis ◽  
Abelardo Ramírez-Hernández ◽  
Mahua Biswas ◽  
...  

2009 ◽  
Vol 15 (S2) ◽  
pp. 1418-1419 ◽  
Author(s):  
JK Hyun ◽  
ZY Liu ◽  
DA Muller

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2014 ◽  
Vol 11 (4) ◽  
pp. 423-428 ◽  
Author(s):  
Sharon Grayer Wolf ◽  
Lothar Houben ◽  
Michael Elbaum

2006 ◽  
Vol 503-504 ◽  
pp. 603-608
Author(s):  
Koji Inoke ◽  
Kenji Kaneko ◽  
Z. Horita

A significant change in microstructure occurs during the application of severe plastic deformation (SPD) such as by equal-channel angular pressing (ECAP). In this study, intense plastic strain was imposed on an Al-10.8wt%Ag alloy by the ECAP process. The amount of strain was controlled by the numbers of passes. After 1 pass of ECAP, shear bands became visible within the matrix. With increasing numbers of ECAP passes, the fraction of shear bands was increased. In this study, the change in microstructures was examined by three-dimensional electron tomography (3D-ET) in transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). With this 3D-ET method, it was possible to conduct a precise analysis of the sizes, widths and distributions of the shear bands produced by the ECAP process. It is demonstrated that the 3D-ET method is promising to understand mechanisms of microstructural refinement using the ECAP process.


2010 ◽  
Vol 16 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Niels de Jonge ◽  
Rachid Sougrat ◽  
Brian M. Northan ◽  
Stephen J. Pennycook

AbstractA three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.


2018 ◽  
Vol 24 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Robert Hovden ◽  
Pengzi Liu ◽  
Noah Schnitzer ◽  
Adam W. Tsen ◽  
Yu Liu ◽  
...  

AbstractLayered transition metal dichalcogenides (TMDs) have attracted interest due to their promise for future electronic and optoelectronic technologies. As one approaches the two-dimensional (2D) limit, thickness and local topology can greatly influence the macroscopic properties of a material. To understand the unique behavior of TMDs it is therefore important to identify the number of atomic layers and their stacking in a sample. The goal of this work is to extract the thickness and stacking sequence of TMDs directly by matching experimentally recorded high-angle annular dark-field scanning transmission electron microscope images and convergent-beam electron diffraction (CBED) patterns to quantum mechanical, multislice scattering simulations. Advantageously, CBED approaches do not require a resolved lattice in real space and are capable of neglecting the thickness contribution of amorphous surface layers. Here we demonstrate the crystal thickness can be determined from CBED in exfoliated 1T-TaS2 and 2H-MoS2 to within a single layer for ultrathin ≲9 layers and ±1 atomic layer (or better) in thicker specimens while also revealing information about stacking order—even when the crystal structure is unresolved in real space.


Sign in / Sign up

Export Citation Format

Share Document