Thickness and Stacking Sequence Determination of Exfoliated Dichalcogenides (1T-TaS2, 2H-MoS2) Using Scanning Transmission Electron Microscopy

2018 ◽  
Vol 24 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Robert Hovden ◽  
Pengzi Liu ◽  
Noah Schnitzer ◽  
Adam W. Tsen ◽  
Yu Liu ◽  
...  

AbstractLayered transition metal dichalcogenides (TMDs) have attracted interest due to their promise for future electronic and optoelectronic technologies. As one approaches the two-dimensional (2D) limit, thickness and local topology can greatly influence the macroscopic properties of a material. To understand the unique behavior of TMDs it is therefore important to identify the number of atomic layers and their stacking in a sample. The goal of this work is to extract the thickness and stacking sequence of TMDs directly by matching experimentally recorded high-angle annular dark-field scanning transmission electron microscope images and convergent-beam electron diffraction (CBED) patterns to quantum mechanical, multislice scattering simulations. Advantageously, CBED approaches do not require a resolved lattice in real space and are capable of neglecting the thickness contribution of amorphous surface layers. Here we demonstrate the crystal thickness can be determined from CBED in exfoliated 1T-TaS2 and 2H-MoS2 to within a single layer for ultrathin ≲9 layers and ±1 atomic layer (or better) in thicker specimens while also revealing information about stacking order—even when the crystal structure is unresolved in real space.

Author(s):  
L. Gandolfi ◽  
J. Reiffel

Calculations have been performed on the contrast obtainable, using the Scanning Transmission Electron Microscope, in the observation of thick specimens. Recent research indicates a revival of an earlier interest in the observation of thin specimens with the view of comparing the attainable contrast using both types of specimens.Potential for biological applications of scanning transmission electron microscopy has led to a proliferation of the literature concerning specimen preparation methods and the controversy over “to stain or not to stain” in combination with the use of the dark field operating mode and the same choice of technique using bright field mode of operation has not yet been resolved.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
Jayhoon Chung ◽  
Guoda Lian ◽  
Lew Rabenberg

Abstract Since strain engineering plays a key role in semiconductor technology development, a reliable and reproducible technique to measure local strain in devices is necessary for process development and failure analysis. In this paper, geometric phase analysis of high angle annular dark field - scanning transmission electron microscope images is presented as an effective technique to measure local strains in the current node of Si based transistors.


2008 ◽  
Vol 112 (6) ◽  
pp. 1759-1763 ◽  
Author(s):  
Norihiko L. Okamoto ◽  
Bryan W. Reed ◽  
Shareghe Mehraeen ◽  
Apoorva Kulkarni ◽  
David Gene Morgan ◽  
...  

2019 ◽  
Vol 104 (10) ◽  
pp. 1436-1443
Author(s):  
Guanyu Wang ◽  
Hejing Wang ◽  
Jianguo Wen

Abstract Interstratified clay minerals reflect the weathering degree and record climatic conditions and the pedogenic processes in the soil. It is hard to distinguish a few layers of interstratified clay minerals from the chlorite matrix, due to their similar two-dimensional tetrahedral-octahedral-tetrahedral (TOT) structure and electron-beam sensitive nature during transmission electron microscopy (TEM) imaging. Here, we used multiple advanced TEM techniques including low-dose high-resolution TEM (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging combined with energy-dispersive spectroscopic (EDS) mapping to study interstratified layers in a chlo-rite sample from Changping, Beijing, China. We demonstrated an interstratified mica or pyrophyllite monolayer could be well distinguished from the chlorite matrix by projected atomic structures, lattice spacings, and chemical compositions with advanced TEM techniques. Further investigation showed two different transformation mechanisms from mica or pyrophyllite to chlorite: either a 4 Å increase or decrease in the lattice spacing. This characterization approach can be extended to the studies of other electron-beam sensitive minerals.


Author(s):  
Ryosuke S. S. Maki ◽  
Peter E. D. Morgan

Many members of the complex crystalline fluorite supercell structures (e.g. zirconolite, pyrochlore and murataite polytypes) have been considered/studied for possible long-term radioactive-waste immobilization. The eight-coordinated sites in these crystals are of particular importance because they are preferred for the accommodation of trivalent rare earths and actinides present in radioactive waste from fuel element processing. The fluorite-type supercell structures include the murataites, M3, M5, M7, M8, having those numbers of repeating fluorite sub-cell units. One simple technique, as shown here, namely the substitution of Hf into the Zr site, is very helpful for structural analysis in these very complex cases in order to further illuminate the site preference of the Zr ion. Three M3 murataite samples, Ca-Mn-Ti-Zr-Al-Fe-O (regular M3), Ca-Ti-Zr-Al-Fe-O (Mn-free M3) and Ca-Mn-Ti-Hf-Al-Fe-O (Hf-substituted M3) are investigated and, through techniques described for larger cells, show that the Zr is very likely not to be hosted in the [6] Ti site in the M3 murataite structure, as suggested by Pakhomova et al. [(2013), Z. Kristallogr. Cryst. Mater. 228, 151–156], but more likely replaces the [8] Ca1 site and less likely the [8] Ca2 site. This adjusted site preference for each cation from the powder X-ray diffraction (PXRD) and scanning transmission electron microscopy electron energy-loss spectroscopy (STEM-EELS) methods, agrees well with the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image.


Sign in / Sign up

Export Citation Format

Share Document