Liquid crystalline properties of type I collagen: Perspectives in tissue morphogenesis

2008 ◽  
Vol 11 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Marie-Madeleine Giraud-Guille ◽  
Emmanuel Belamie ◽  
Gervaise Mosser ◽  
Christophe Helary ◽  
Frédéric Gobeaux ◽  
...  
2017 ◽  
Author(s):  
Mariam Veschgini ◽  
Hendrik O. Petersen ◽  
Stefan Kaufmann ◽  
Wasim Abuillan ◽  
Ryo Suzuki ◽  
...  

AbstractAlbeit ample evidence has suggested the remodeling of extracellular matrix (ECM) in animals plays crucial roles in development and diseases, little is understood how ECM mechanics correlates with tissue morphogenesis. In this study, we quantitatively determined how spatio-temporal elasticity patterns in ECM change during the asexual reproduction of freshwater polyp Hydra. We first determined the mesoscopic protein arrangement in Hydra ECM (mesoglea) by grazing-incidence small-angle X-ray scattering with nano-beam (nano-GISAXS). Our data unraveled fibrillar type I collagen in Hydra mesoglea (Hcol-I) takes an anisotropic, more strongly distorted hexagonal lattice compared to those in vertebrates that could be attributed to the lower proline content and lack of lysin-crosslinks in Hcol-1 fibers. Then, we “mapped” the spatio-temporal changes in ECM stiffness ex vivo with aid of nano-indentation. We identified three representative elasticity patterns during tissue growth along the oral-aboral body axis of the animals. Our complementary proteome analysis demonstrated that the elasticity patterns of the ECM correlate with a gradient like distribution of proteases. Perturbations of the oral Wnt/β-catenin signaling center further indicated that ECM elasticity patterns are governed by Wnt/β-catenin signaling. The ex vivo biomechanical phenotyping of Hydra mesoglea established in this study will help us gain comprehensive insights into the spatio-temporal coordination of biochemical and biomechanical cues in tissue morphogenesis in vivo.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


2007 ◽  
Vol 177 (4S) ◽  
pp. 314-314 ◽  
Author(s):  
Joon-Yang Kim ◽  
Hoon Seog Jean ◽  
Beom Joon Kim ◽  
Kye Yong Song

Sign in / Sign up

Export Citation Format

Share Document