scholarly journals Regulation of freshwater use to restore ecosystems resilience

2021 ◽  
pp. 100303
Author(s):  
A. Murgatroyd ◽  
J.W. Hall
Keyword(s):  
Author(s):  
Elias Marvinney ◽  
Alissa Kendall

Abstract Purpose California’s Central Valley produces more than 75% of global commercial almond supply, making the life cycle performance of almond production in California of global interest. This article describes the life cycle assessment of California almond production using a Scalable, Process-based, Agronomically Responsive Cropping System Life Cycle Assessment (SPARCS-LCA) model that includes crop responses to orchard management and modeling of California’s water supply and biomass energy infrastructure. Methods A spatially and temporally resolved LCA model was developed to reflect the regional climate, resource, and agronomic conditions across California’s Central Valley by hydrologic subregion (San Joaquin Valley, Sacramento Valley, and Tulare Lake regions). The model couples a LCA framework with region-specific data, including water supply infrastructure and economics, crop productivity response models, and dynamic co-product markets, to characterize the environmental performance of California almonds. Previous LCAs of California almond found that irrigation and management of co-products were most influential in determining life cycle CO2eq emissions and energy intensity of California almond production, and both have experienced extensive changes since previous studies due to drought and changing regulatory conditions, making them a focus of sensitivity and scenario analysis. Results and discussion Results using economic allocation show that 1 kg of hulled, brown-skin almond kernel at post-harvest facility gate causes 1.92 kg CO2eq (GWP100), 50.9 MJ energy use, and 4820 L freshwater use, with regional ranges of 2.0–2.69 kg CO2eq, 42.7–59.4 MJ, and 4540–5150 L, respectively. With a substitution approach for co-product allocation, 1 kg almond kernel results in 1.23 kg CO2eq, 18.05 MJ energy use, and 4804 L freshwater use, with regional ranges of 0.51–1.95 kg CO2eq, 3.68–36.5 MJ, and 4521–5140 L, respectively. Almond freshwater use is comparable with other nut crops in California and globally. Results showed significant variability across subregions. While the San Joaquin Valley performed best in most impact categories, the Tulare Lake region produced the lowest eutrophication impacts. Conclusion While CO2eq and energy intensity of almond production increased over previous estimates, so too did credits to the system for displacement of dairy feed. These changes result from a more comprehensive model scope and improved assumptions, as well as drought-related increases in groundwater depth and associated energy demand, and decreased utilization of biomass residues for energy recovery due to closure of bioenergy plants in California. The variation among different impact categories between subregions and over time highlight the need for spatially and temporally resolved agricultural LCA.


2018 ◽  
Vol 613-614 ◽  
pp. 931-943 ◽  
Author(s):  
B. Chen ◽  
M.Y. Han ◽  
K. Peng ◽  
S.L. Zhou ◽  
L. Shao ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 2741 ◽  
Author(s):  
Helena Ranängen ◽  
Mathias Cöster ◽  
Raine Isaksson ◽  
Rickard Garvare

Background: A particular challenge in the work to realize the global goals for sustainable development is to find ways for organizations to identify and prioritize organizational activities that address these goals. There are also several sustainability initiatives, guidelines and tools to consider when planning, working with and reporting on sustainable development. Although progress has been made, little has been written about how organizations rise to and manage the challenge. The paper explores how organizations address sustainable development, which sustainability aspects they prioritize and whether previous research can improve the priority process by using materiality analysis approach. Methods: A case study approach was chosen. Data was collected by interactive workshops and documentation. The participating organizations were two Swedish municipalities; Results: The municipalities have introduced a number of sustainability aspects into their organizational governance, especially in terms of society, human rights and the environment. A materiality analysis was conducted to determine the relevance and significance of sustainability aspects. The result shows that climate action, biodiversity and freshwater use are aspects that should be prioritized; Conclusion: The materiality analysis methodology chosen for prioritizing of sustainability aspects was useful and easy to work with. However, the sustainability aspect matrix and the risk assessment have to be updated regularly in order to form an effective base for the materiality analysis.


2019 ◽  
Author(s):  
Ajishnu Roy ◽  
Kousik Pramanick

AbstractAgriculture, along with industry and household sector are three major sectors of human consumption. Agriculture has proved to be a major contributor to exceeding planetary boundaries. Here, we have explored the impact of agriculture in the Earth system processes, through eight dimensions of planetary boundaries or safe operating spaces: climate change (10.73%), freshwater use (91.56%), arable land use (37.27%), nitrogen use (95.77%), phosphorus use (87.28%), ecological footprint (19.42%), atmospheric pollution (2.52% - 38.08%) and novel entities. In this work, we have also shown role of agriculture to the socio-economic development dimensions: gender equality, employment and economic growth. We have shown that the safe operating limits for agriculture are going to decline by almost 55% (climate change), 300% (freshwater use), 50-55% (arable land use), 180% (nitrogen use), 265% (phosphorus use) and 20% (ecological footprint) in 2050, if the most inefficient way of consumption is chosen and continued. To alleviate the role of agriculture in transgressing planetary boundaries, it is indispensable to comprehend how many roles of agriculture is playing and where which target should be set to framework the national agricultural policies in coherence with attaining sustainable development goals of UN by 2030.


2019 ◽  
Vol 128 (2) ◽  
pp. 163-189 ◽  
Author(s):  
Sean W. Hixon ◽  
Robert J. DiNapoli ◽  
Carl P. Lipo ◽  
Terry L. Hunt

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Bradley Ridoutt ◽  
Danielle Baird ◽  
Kimberley Anastasiou ◽  
Gilly Hendrie

AbstractThe food system is responsible for around 70% of global freshwater use. Pathways toward responsible consumption and production of food are therefore critically needed to ensure the planetary boundary for freshwater use is not transgressed. There is also an uneven spatial distribution of freshwater resources and human water demands, meaning that water-scarcity is acute in some regions but a lesser concern in others. Quantifying the water-scarcity impacts associated with food consumption is therefore a complex challenge due to the diversity of individual eating patterns, the very large number of individual food products available, and the many different regions where food is grown or processed. To our knowledge, this is the first study to calculate water footprints for a large number of self-selected diets. Life cycle assessment was used to model the water-scarcity footprints of 9,341 individual Australian adult diets obtained through 24-hour recall as part of the most recent Australian Health Survey. Three water-scarcity indicators were used, including the AWARE model recently developed by a project group working under the auspices of the United Nations Environment Programme (UNEP) / Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative (www.lifecycleinitiative.org). In addition, a diet quality score was calculated for each of these diets. Our objective was to identify pathways toward healthier diets with lower water-scarcity impacts. Dietary water-scarcity footprints averaged 362 L-eq person-1 day-1 and were highly variable (sd. 218 L-eq person-1 day-1), reflecting the diversity of eating habits in the general community. The largest water-scarcity impacts were related to the excessive consumption of discretionary foods (alcoholic beverages, processed meat products, dairy desserts, cream, butter, muesli bars, confectionery, chocolate, biscuits, cakes, waffles, fried potato and extruded snacks, etc.). The potential to reduce dietary water-scarcity impacts is large, although the opportunity to intervene through amended dietary guidelines is not straightforward due to the large variations in water-scarcity footprint intensity between individual foods within a food group, and the inability of consumers to identify lower water-scarcity footprint products without food labeling. Reductions in the water-scarcity footprint of Australian food consumption are likely best achieved through reductions in food waste, technological change to improve water-use efficiency in food production, as well as the implementation of product reformulation and procurement strategies in the food manufacturing sector to avoid higher water-scarcity footprint intensity ingredients.


2020 ◽  
Vol 158 (5) ◽  
pp. 416-430
Author(s):  
H. M. Menendez ◽  
L. O. Tedeschi

AbstractPerception of freshwater use varies between nations and has led to concerns of how to evaluate water use for sustainable food production. The water footprint of beef cattle (WFB) is an important metric to determine current levels of freshwater use and to set sustainability goals. However, current WFB publications provide broad WF values with inconsistent units preventing direct comparison of WFB models. The water footprint assessment (WFA) methodologies use static physio-enviro-managerial equations, rather than dynamic, which limits their ability to estimate cattle water use. This study aimed to advance current WFA methods for WFB estimation by formulating the WFA into a system dynamics methodology to adequately characterize the major phases of the beef cattle industry and provide a tool to identify high-leverage solutions for complex water use systems. Texas is one of the largest cattle producing areas in the United States, a significant water user. This geolocation is an ideal template for WFB estimation in other regions due to its diverse geography, management-cultures, climate and natural resources. The Texas Beef Water Footprint model comprised seven submodels (cattle population, growth, nutrition, forage, WFB, supply chain and regional water use; 1432 state variables). Calibration of our model replicated initial WFB values from an independent study by Chapagain and Hoekstra in 2003 (CH2003). This CH2003 v. Texas production scenarios evaluated model parameters and assumptions and estimated a 41–66% WFB variability. The current model provides an insightful tool to improve complex, unsustainable and inefficient water use systems.


Sign in / Sign up

Export Citation Format

Share Document