Development and validation of an integrated pest management strategy for the control of major insect pests on yard-long bean in Cambodia

2019 ◽  
Vol 116 ◽  
pp. 82-91 ◽  
Author(s):  
Ramasamy Srinivasan ◽  
Sotelo Paola ◽  
Mei-ying Lin ◽  
Heng Chhun Hy ◽  
Kang Sareth ◽  
...  
2018 ◽  
Vol 71 ◽  
pp. 112-120 ◽  
Author(s):  
Abie Horrocks ◽  
Paul A. Horne ◽  
Melanie M. Davidson

An integrated pest management (IPM) strategy was compared with farmers’ conventional pest management practices on twelve spring- and autumn-sown seed and forage brassica crops. Demonstration trials were conducted in Canterbury from spring 2015 to autumn 2017 by splitting farmers’ paddocks in half and applying the two management approaches side by side. A farmer participatory approach was used, with management decisions based on monitoring pests and biological-control agents. Farmer and adviser training with a focus on monitoring and identification was carried out. Biological-control agents capable of contributing to pest control were identified in all brassica crops. There was a 35% reduction in the number of insecticides applied under IPM compared with conventional management, negligible crop yield differences, and the type of insecticides applied was different. IPM adoption at these farms was high by the end of the 3-year project with 11 of the 12 farmers implementing IPM across 90—100% of their brassica crops. This project was a starting point for an industry-wide change of practice to IPM, which has become more widespread since its completion.


2014 ◽  
Vol 67 ◽  
pp. 184-190 ◽  
Author(s):  
M.M. Davidson ◽  
R.C. Butler ◽  
N.M. Taylor ◽  
M-C. Nielsen ◽  
C.E. Sansom ◽  
...  

Bactericera cockerelli (tomato potato psyllid; TPP) is an important pest of solanaceous crops in New Zealand and North America A volatile compound that alters the behaviour of TPP could be developed into a component of an integrated pest management strategy for solanaceous crops One compound 2undecanone was found to increase the percentages of female and male TPP (65 P


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Catherine M Little ◽  
Thomas W Chapman ◽  
N Kirk Hillier

AbstractThe past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.


2020 ◽  
Vol 57 (5) ◽  
pp. 1342-1348
Author(s):  
Jennifer R Gordon

Abstract Urban insect pests such as ants, termites, cockroaches, and bed bugs are more than just nuisances; they often negatively impact structures, landscapes, animal health, commercial food production, food safety, and public health (mental, physical, and financial). Due to the tremendous burden these insects can inflict, researchers, manufacturers, and pest management professionals work to create solutions that effectively manage urban and structural pests. One solution that has proven useful in agriculture is the development of an integrated pest management (IPM) plan; i.e., a science-based approach to pest control that utilizes multiple tactics such as preventative tools, chemical control (sprays, fumigation, and baits), biological control, and exclusion. There are many permutations of urban IPM plans, but in general they consist of five components: 1) identifying the pest, 2) monitoring the pest, 3) developing an intervention plan (including prevention and control techniques), 4) implementing the program, and 5) recording and evaluating the results. The objectives of the current publication were to 1) highlight urban entomology research published in 2019 and 2) show how the results from these publications help pest management professionals create and implement IPM plans.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100671 ◽  
Author(s):  
Nadia Kermani ◽  
Zainal-Abidin Abu Hassan ◽  
Amalina Suhaimi ◽  
Ismail Abuzid ◽  
Noor Farehan Ismail ◽  
...  

Author(s):  
A. A. Motaphale ◽  
B. B. Bhosle

The investigation was carried out during kharif 2010-2011 and 2011-2012 in order to know the effect of different IPM module on insect pests of soybean. Significantly lower population of (2.54 larvae/ mrl) H.armigera, per cent pod damage (4.23%) by H.armigera were observed in MAU module. The minimum larval population of semilooper (3.62 larvae/mrl), S.litura (2.64 larvae/mrl) and per cent leaflet damage (6.71%) due to leaf miner, the minimum per cent defoliation (10.49%) due to defoliators were observed in chemical control followed by MAU module.


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Nxitywa ◽  
A.P. Malan

Entomopathogenic nematodes (EPNs) are insect parasites that are used successfully as biological controlagents against key pest insects of grapevine. To achieve low chemical residues and the sustainableproduction of grapes, it is important that biological control agents such as entomopathogenic nematodesfor the control of grapevine insect pests be incorporated in an integrated pest management system forgrape production. However, the commercialisation and large-scale use of EPNs is limited by their shortshelf life in formulations and in storage, thus leading to poor quality and reduced efficacy against insectsin the field. In South Africa, interest in the use of EPNs within an integrated pest management system hasgrown over the past two decades, therefore developing a formulation technique with an acceptable storagesurvival period, while maintaining infectivity, is essential. Moreover, the successful control of insects usingEPNs is only achievable when the formulated product reaches the end user in good condition. This reviewis focused on the different types of formulations required for storage and ease of transport, together withthe application formulation for above-ground pests and the factors affecting them. The quality assessment,storage and handling of formulated EPNs are also discussed.


Sign in / Sign up

Export Citation Format

Share Document