scholarly journals Short- and long-term effects on reproductive parameters of female Wistar rats after exposure to rosuvastatin starting in pre-puberty

2020 ◽  
Vol 1 ◽  
pp. 149-160
Author(s):  
Jorge W.F. Barros ◽  
Karolina S. Tonon ◽  
Cibele S. Borges ◽  
Patrícia V. Silva ◽  
Ana F.Q. Lozano ◽  
...  
2020 ◽  
Vol 598 (3) ◽  
pp. 489-502 ◽  
Author(s):  
Carla Bruna Pietrobon ◽  
Rosiane Aparecida Miranda ◽  
Iala Milene Bertasso ◽  
Paulo Cezar de Freitas Mathias ◽  
Maria Lúcia Bonfleur ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1029 ◽  
Author(s):  
Ana Cláudia Munhoz ◽  
Eloisa Aparecida Vilas-Boas ◽  
Ana Carolina Panveloski-Costa ◽  
Jaqueline Santos Moreira Leite ◽  
Camila Ferraz Lucena ◽  
...  

Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote β -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.


2021 ◽  
Vol 22 (23) ◽  
pp. 13106
Author(s):  
Alexander Younsi ◽  
Guoli Zheng ◽  
Lennart Riemann ◽  
Moritz Scherer ◽  
Hao Zhang ◽  
...  

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso–Beattie–Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.


Author(s):  
Thomas L. Davies ◽  
Tami F. Wall ◽  
Allan Carpentier

After examination of the research carried out by other agencies, Saskatchewan Highways and Transportation (SHT) embarked on an initiative to adapt low tire pressure technologies to the province's needs and environment. The focus of the initiative was to explore several technical questions from SHT's perspective: (a) Can low tire pressures be used to increase truck weights from secondary to primary without increasing road maintenance costs on thin membrane surface roads? (b) What are the short- and long-term effects of tire heating under high-speed/high-deflection constant reduced pressure (CRP) operations in a Saskatchewan environment? (c) What effects do lower tire pressures have on vehicle stability at highway speeds? To date, significant opportunities have been noted on local hauls (less than 30 min loaded at highway speeds) for CRP operation and long primary highway hauls that begin or end in relatively short secondary highway sections that limit vehicle weight allowed for the whole trip for central tire inflation technology. The background and environment for the initiative and the investigations and demonstrations envisioned and undertaken are briefly outlined.


Author(s):  
Maria Fitzgerald ◽  
Michael W. Salter

The influence of development and sex on pain perception has long been recognized but only recently has it become clear that this is due to specific differences in underlying pain neurobiology. This chapter summarizes the evidence for mechanistic differences in male and female pain biology and for functional changes in pain pathways through infancy, adolescence, and adulthood. It describes how both developmental age and sex determine peripheral nociception, spinal and brainstem processing, brain networks, and neuroimmune pathways in pain. Finally, the chapter discusses emerging evidence for interactions between sex and development and the importance of sex in the short- and long-term effects of early life pain.


Sign in / Sign up

Export Citation Format

Share Document