Cationic channels have a key role in mammalian sperm cryotolerance

Cryobiology ◽  
2020 ◽  
Vol 97 ◽  
pp. 290
Author(s):  
Ariadna Delgado-Bermúdez ◽  
Marc Llavanera ◽  
Júlia Batlle ◽  
Sergi Bonet ◽  
Marc Yeste ◽  
...  
1995 ◽  
Vol 7 (4) ◽  
pp. 905 ◽  
Author(s):  
LR Fraser

Successful sperm function leads to fertilization. It is dependent on the extracellular environment, especially the array and concentration of various ions. Considerable evidence indicates that this is because of consequent effects on the intracellular ionic composition. Although both cations and anions undoubtedly play a role in a modulating sperm function, most of the evidence currently available concerns cations. Therefore, this review will concentrate on cations, focussing on Ca2+, Na+, K+ and H+. Their requirements for successful capacitation (mammalian sperm) and acrosomal exocytosis (both invertebrate and mammalian sperm) will be considered. In particular, the mechanisms which may control ion fluxes, leading to changes in the intracellular ionic composition and subsequently to changes in sperm functional potential, will be addressed.


2007 ◽  
Vol 23 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Michael Oberholzer ◽  
Patrick Bregy ◽  
Gabriela Marti ◽  
Mihaela Minca ◽  
Martin Peier ◽  
...  
Keyword(s):  

2006 ◽  
Vol 12 (S02) ◽  
pp. 232-233
Author(s):  
A Klaus ◽  
G Hunnicutt

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2005


Reproduction ◽  
2005 ◽  
Vol 130 (2) ◽  
pp. 213-222 ◽  
Author(s):  
K A Fischer ◽  
K Van Leyen ◽  
K W Lovercamp ◽  
G Manandhar ◽  
M Sutovsky ◽  
...  

Lipoxygenases (LOXs) are a family of enzymes capable of peroxidizing phospholipids. A member of the LOX family of enzymes, 15-LOX, participates in the degradation of mitochondria and other organelles within differentiating red blood cells, the reticulocytes. The present study provides biochemical and immunocytochemical evidence for the presence of 15-LOX in the sperm cytoplasmic droplet (CD). Testicular, epididymal and ejaculated spermatozoa were evaluated for the presence of 15-LOX using an affinity-purified immune serum raised against a synthetic peptide corresponding to the C-terminal sequence of rabbit reticulocyte 15-LOX. Western blotting revealed an appropriate single band of ~81 kDa in boar spermatozoa but not in boar seminal plasma. When ejaculated boar spermatozoa were subjected to separation on a 45/90% Percoll gradient, 15-LOX co-migrated with the immotile sperm and cellular debris/CD fractions, but not with the motile sperm fraction containing morphologically normal spermatozoa without CDs. Varied levels of 15-LOX were expressed in ejaculated sperm samples from boars with varied semen quality. By immunofluorescence, prominent 15-LOX immunoreactivity was found within the residual body in the testis and within the CDs from caput, corpus and cauda epididymal and ejaculated spermatozoa. Components of the ubiquitin-dependent proteolytic pathway, which is thought to facilitate both spermiogenesis and reticulocyte organelle degradation, were also detected in the sperm CD. These included ubiquitin, the ubiquitin-conjugating enzyme E2, the ubiquitin C-terminal hydrolase PGP 9.5, and various 20S proteasomal core subunits of the α- and β-type. The 15-LOX and various components of the ubiquitin–proteasome pathway were also detected in sperm CDs of other mammalian species, including the human, mouse, stallion and wild babirusa boar. We conclude that 15-LOX is prominently present in the mammalian sperm CD and thus may contribute to spermiogenesis, CD function or CD removal.


1994 ◽  
Vol 269 (13) ◽  
pp. 10133-10140 ◽  
Author(s):  
T. Baba ◽  
Y. Niida ◽  
Y. Michikawa ◽  
S. Kashiwabara ◽  
K. Kodaira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document