scholarly journals Elasto-plastic Bending Behaviors of Steel Fiber Reinforced Expanded-shale Lightweight Concrete Beams Analyzed by Nonlinear Finite-element Method

2020 ◽  
Vol 13 ◽  
pp. e00372
Author(s):  
Changyong Li ◽  
Qi Li ◽  
Xiaoke Li ◽  
Xiaoyan Zhang ◽  
Shunbo Zhao
Author(s):  
Mariacristina Gagliardi

In this paper, the authors propose a set of analyses on the deployment of coronary stents by using a nonlinear finite element method. The goal is to propose a convergence test able to select the appropriate mesh dimension and a methodology to perform the simplification of structures composed of cyclically repeated units to reduce the number of degrees of freedom and the analysis run time. A systematic study, based on the analysis of seven meshes for each model, was performed, gradually reducing the element dimension. In addition, geometric models were simplified considering symmetries; adequate boundary conditions were applied and verified based on the results obtained from the analysis of the whole model.


2019 ◽  
Vol 972 ◽  
pp. 93-98
Author(s):  
Nurulain Hanida Mohamad Fodzi ◽  
M.H. Mohd Hisbany

This paper deals with behavior and capacity of punching shear resistance for ribbed slabs produce from self-compacting fiber reinforced concrete (SCFRC) by application of nonlinear finite element method. The analysis will be achieved by using ABAQUS software. The nonlinear finite element analysis by ABAQUS will be compare with the experimental results. Results and conclusions may be useful for establishing recommendation and need to be acknowledged.


2014 ◽  
Vol 635-637 ◽  
pp. 594-597
Author(s):  
Byeong Soo Kim ◽  
Byung Young Moon ◽  
Sung Kwan Kim

Air spring is used for the suspension system and it affects the vehicle stability and riding comfort by improving the impact-relief, braking, and cornering performance. Air Spring is comprised of the upper plate, lower plate, and rubber sleeve. Rubber sleeve is the composite material, which is made up of combination of rubber and Nylon, and the characteristics are changed according to the shape of rubber-sleeve, the angle of reinforcement cord. In this study, the distribution of internal stresses and the deformation of rubber composite material are analyzed through the nonlinear finite element method. The result showed that the internal maximum stresses and deformations about the changes of cord angle caused the more the Young's modulus decrease, the more maximum stress reduced.


Sign in / Sign up

Export Citation Format

Share Document