scholarly journals Effect of encapsulation area on the thermal performance of PCM incorporated concrete bricks: A case study under Iraq summer conditions

Author(s):  
Qudama Al-Yasiri ◽  
Márta Szabó
Keyword(s):  
2018 ◽  
Vol 45 ◽  
pp. 01001
Author(s):  
Yasser Arab ◽  
Ahmad Sanusi Hassan ◽  
Bushra Qanaa

The study investigates apartment’s façade thermal performance with neo-minimalist architectural style in Penang, Malaysia. Neo-minimalist style is considered as the most popular style in Malaysia in 2010s. The style is rediscovering from early modern minimalist movement with a design concept “less is more”. It applies minimal and efficient design of architectural character in defining form and space. Penang Island the second most important city in Malaysia after Kuala Lumpur. It is located at the north-western part of the country. The first case studies is the Light Linear apartment which has sixteen stories located on the east cost of Penang Island at Pantai Street, Penang. The second case study is BayStar apartment building, the eleven stories building tis located in Bayan Lepas at the seaside facing Jerejak Island. In order to conduct this study Fluke Ti20 thermal imager was used to capture thermal images for the west facades of the selected case study hourly from 12:00 to 6:00 pm on 15th March 2017. The study finds that the recessed wall, balconies and the shading devices were the important elements to provide shades on the façades for good thermal performance.


2021 ◽  
Author(s):  
Ladan Vahidi-Arbabi

Thermal performance of complex buildings like data centers is not easy to evaluate. Experimental Investigation of the effects of energy conservation methods or any alteration that might occur in hundreds of variables in data centres would cost stakeholders time and money. And they might find worthless at times. Building energy model is a well-established field of science with an insufficient number of applications in data centers. This study presents methods of developing a data center model based on an actual case study. Moreover, it identifies effective calibrating strategies to increase the model performance accuracy relative to a recorded dataset. A reliable energy model can assist data center operators and researchers in different ways. As a result, calibrated energy model proved Earth Rangers’ data center can be independent of a heat pump or chiller use for most of the year, while ground heat exchangers deliver excessive heat to the ground as the heat sink.


2009 ◽  
Vol 41 (12) ◽  
pp. 1368-1373 ◽  
Author(s):  
Huajun Wang ◽  
Chengying Qi ◽  
Hongpu Du ◽  
Jihao Gu

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


2019 ◽  
Vol 38 (1) ◽  
pp. 51-67
Author(s):  
Cormac Flood ◽  
Lloyd Scott

Purpose The residential sector in Ireland accounted for 25 per cent of energy related CO2 emissions in 2016 through burning fossil fuels, a major contributor to climate change. In support of Ireland’s CO2 reduction targets, the existing housing stock could contribute greatly to the reduction of space-heating energy demand through retrofit. Approximately 50 per cent of Ireland’s 2m dwellings pre-date building regulations and are predominantly of cavity and solid wall construction, the performance of which has not been extensively investigated at present. Although commitment to thermal upgrade/retrofit of existing buildings may increase under future government policies, the poor characterisation of actual thermal performance of external walls may hinder the realisation of these targets. Thermal transmittance (U-values) of exterior walls represents a source of uncertainty when estimating the energy performance of dwellings. It has been noted in research that the standard calculation methodology for thermal transmittance should be improved. Implementing current U-value calculation methods may result in misguided retrofit strategies due to the considerable discrepancies between in situ measurements and calculated wall U-values as documented in the case studies carried out in this research. If the method of hygrothermal analysis were to be employed as a replacement for the current standard calculation, it could have significant implications for policy and retrofit decision making. The paper aims to discuss this issue. Design/methodology/approach This research project analysed a case study situated in Dublin, Ireland. The case studies offer an account of the in situ thermal transmittance of exterior walls and link these to hygrothermally simulated comparisons along with more traditional design U-values. Findings The findings of this research identify discrepancies between in situ and design U-values, using measurement, hygrothermal simulation and standard method U-value calculations. The outcomes of the research serve as an introduction to issues emanating from a larger research project in order to encourage researchers to understand and further explore the topic. Originality/value It has previously been highlighted that moisture content is linked to the increase in thermal conductivity of building materials, thus reducing the thermal effectiveness and increasing the elemental U-value. Therefore, it is vital to implement reliable prediction tools to assess potential thermal performance values. This paper presents the findings of a critical instance case study in Dublin, Ireland in which an existing west facing external wall in a semi-detached dwelling was analysed, simulated and measured to verify the elemental wall assembly and quantify thermal transmittance (U-value) incorporating the major criteria required for building performance simulation.


Sign in / Sign up

Export Citation Format

Share Document