scholarly journals Development of a new method for estimating the overall heat transfer coefficient of heat exchangers – Validation in automotive applications

2021 ◽  
Vol 28 ◽  
pp. 101434
Author(s):  
Ahmad Faraj ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Farouk Hachem ◽  
Mahmoud Khaled
2009 ◽  
Vol 62-64 ◽  
pp. 694-699 ◽  
Author(s):  
E. Akpabio ◽  
I.O. Oboh ◽  
E.O. Aluyor

Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. There are many modifications of the basic configuration which can be used to solve special problems. Baffles serve two functions: Most importantly, they support the tubes in the proper position during assembly and operation and prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field, increasing the velocity and the heat transfer coefficient. The objective of this paper is to find the baffle spacing at fixed baffle cut that will give us the optimal values for the overall heat transfer coefficient. To do this Microsoft Excel 2003 package was employed. The results obtained from previous studies showed that to obtain optimal values for the overall heat transfer coefficient for the shell and tube heat exchangers a baffle cut of 20 to 25 percent of the diameter is common and the maximum spacing depends on how much support the tubes need. This was used to validate the results obtained from this study.


Author(s):  
Ataollah Khanlari ◽  
Adnan Sözen ◽  
Halil İbrahim Variyenli

PurposeThe plate heat exchangers (PHE) with small size but large efficiency are compact types of heat exchangers formed by corrugated thin pressed plates, operating at higher pressures when compared to most other traditional exchangers. This paper aims to analyze heat transfer characteristics in the PHE experimentally and numerically.Design/methodology/approachComputational fluid dynamics analysis has been used to simulate the problem by using the ANSYS fluent 16 software. Also, the effect of using TiO2/water nanofluid as working fluid was investigated. TiO2/water nanofluid had 2% (Wt/Wt) nanoparticle content. To improve solubility of the TiO2nanoparticles, Triton X-100 was added to the mixture. The results have been achieved in different working condition with changes in fluid flow rate and its temperature.FindingsThe obtained results showed that using TiO2/water nanofluid improved the overall heat transfer coefficient averagely as 6%, whereas maximum improvement in overall heat transfer coefficient was 10%. Also, theoretical and experimental results are in line with each other.Originality/valueThe most important feature which separates the present study from the literature is that nanofluid is prepared by using TiO2nanoparticles in optimum size and mixing ratio with surfactant usage to prevent sedimentation and flocculation problems. This process also prevents particle accumulation that may occur inside the PHE. The main aim of the present study is to predict heat transfer characteristics of nanofluids in a plate heat exchanger. Therefore, it will be possible to analyze thermal performance of the nanofluids without any experiment.


Author(s):  
Pablo Coronel ◽  
K.P. Sandeep

This study involved the determination of convective heat transfer coefficient in both helical and straight tubular heat exchangers under turbulent flow conditions. The experiments were conducted in helical heat exchangers, with coils of two different curvature ratios (d/D = 0.114 and 0.078), and in straight tubular heat exchangers at various flow rates (1.89 x 10-4 - 6.31 x 10-4 m3/s) and for different end-point temperatures (92 - 149 °C). The results show that the overall heat transfer coefficient (U) in the helical heat exchanger is much higher than that in straight tubular heat exchangers. In addition, U was found to be larger in the coil of larger curvature ratio (d/D = 0.114) than in the coil of smaller curvature ratio (d/D = 0.078). The inside (hi) and outside (ho) convective heat transfer coefficients were determined based on the overall heat transfer coefficient and a correlation to compute the inside convective heat transfer coefficient (hi) as a function of NRe, NPr, and d/D was developed.


2019 ◽  
Vol 70 (6) ◽  
pp. 2040-2043
Author(s):  
Sinziana Radulescu ◽  
Loredana Irena Negoita ◽  
Ion Onutu

A relation for calculation of the effective overall heat transfer coefficient in a triple concentric-tube heat exchanger is proposed. The relation of the effective overall heat transfer coefficient is obtained based on total thermal resistance and it is applied within a case study for thermal analysis of two triple concentric-tube heat exchangers with different geometries, hot fluids and operating conditions. Through case study it is found that the values of effective overall heat transfer coefficient can be obtained with acceptable errors, up to 3 % for both heat exchangers.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750020 ◽  
Author(s):  
S. Nallusamy ◽  
N. Manikanda Prabu

Heat exchanger plays an essential part in industrial sector in transferring the heat energy. Heat is exchanged between fluids in convection and conduction mode through the walls of the heat exchanger. If the heat transfer medium has low thermal conductivity, it will greatly limit the efficiency of the heat exchanger. Whenever the system acts subjected to an increase in the heat load, heat fluxes caused by more power and smaller size, cooling is one of the technical challenges faced by the industries. The objective of this research work is to evaluate the overall heat transfer coefficient through an experimental analysis on the convective heat transfer and flow characteristics of a nanofluid. In our experiment, the nanofluid consists of water and one percentage volume concentration of Al2O3-water nanofluid flowing through parallel and counter flow in shell and tube heat exchangers. About 50[Formula: see text]nm diameter of Al2O3 nanoparticles was used in this analysis and found that the overall heat transfer coefficient and convective heat transfer coefficient of nanofluid were slightly higher than those of the base liquid at same mass flow rate and inlet temperature. Here, there are three samples of dissimilar mass flow rates, which have been identified for conducting the experiments and their results are continuously monitored and reported. Finally, the observed results through an experimental investigation were presented and concluded that the enhancement of overall heat transfer coefficient is likely to be feasible by means of increasing the mass flow rate of base fluid and prepared nanofluid on the proportional basis.


2021 ◽  
Vol 309 ◽  
pp. 01011
Author(s):  
R Elakkiyadasan ◽  
Kumar P Manoj ◽  
M Subramanian ◽  
N Balaji ◽  
M Karthick ◽  
...  

In the current work, attempt for enhancing the heat exchanger of the shell and tube by analyzing the various parameters. The heat exchanger is a device used to transfer heat between at least two fluids. In the different kinds of heat exchangers utilized in various industries, shell and tube heat exchangers are presumably the most adaptable and widely heat exchangers utilized in most industrial areas. Based on the relationship between different parameters such as tube velocity, overall heat transfer coefficient, mass flow rate, and pumping power, analysis is carried out. Results show that the tube velocity increases the overall heat transfer coefficient, total pressure drop and mass flow rate of water, Pumping Power, up to the certain limit and starts to decrease. So that the parameters can be optimized by conducting the experiments based on different input parameters. The parameters which influence the optimal result are researched and recommended.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Reza Aghayari ◽  
Heydar Madah ◽  
Bahram Keyvani ◽  
Abdolreza Moghadassi ◽  
Fatemeh Ashori

This paper refers to the Overall Heat Transfer Coefficient of Nano Fluids (OHTCNF) in heat exchangers and the relevant effective parameters. An improvement in Heat Transfer (HT) and OHTCNF containing nanoaluminum oxide with ca. 20 nm particle size and particular volume fraction in the range of 0.001-0.002 has been reported. The effects of temperature and concentration of nanoparticles on HT variation as well as Overall Heat Transfer Coefficient (OHTC) in a countercurrent double tube heat exchanger with turbulent flow have been studied. The experimental results show a remarkable 8%–10% rise in the mean HT and the OHTC. Accordingly, with an increase in the processing temperature and/or particle concentration the OHTC was observed to increase.


2015 ◽  
Vol 37 ◽  
pp. 199
Author(s):  
Ali Mahrooghi ◽  
Mohammad Moghiman

In this paper, forced convection flow and heat transfer of a Al2O3/Water nanofluid have beeninvestigated numerically by single and two phase (volume of fluid) models. Nanofluid flows inside the innertube of the isothermally concentric circular and sinusoidal double tube heat exchangers while hot pure waterflows in the outer tube. The single-phase and two-phase models is used to simulate the nanofluid forcedconvection of 2% and 3% volume concentrations. The renormalization group k-ε model is used to simulateturbulence in ANSYS FLUENT 15.0. Results show that the overall heat transfer coefficient increases withnanoparticle volume concentrations in the heat exchangers. The highest overall heat transfer coefficient rates aredetected, for each concentration and shape, corresponding to the highest flow rate for the sinusoidal tube heatexchanger . The maximum overall heat transfer coefficient enhancement is 220% for the particle volumeconcentration of 3% at the inner tube of concentric sinusoidal double tube heat exchanger corresponding to flowrate =10 LPM. The results reveal that the Al2O3/water pressure drop along the inner tube of circular andsinusoidal double tube heat exchanger increases by about 3% and 5% for volume concentrations of 2% and 3%,respectively, given flow rate compared to the base fluid.Comparison of these results with Rohit S. Khedkar‘spublished experimental data, showed good agreement.


2020 ◽  
Vol 20 (1) ◽  
pp. 31
Author(s):  
Hairul Huda ◽  
Renanto Handogo ◽  
Totok Ruki Biyanto ◽  
Wei Wu ◽  
Vincentius Surya Kurnia Adi

Heat exchanger networks (HENs) play an important role in the chemical industries. Unfortunately, fouling is inevitable in heat exchangers operation. Therefore, the optimal cleaning procedure is required to restore heat exchangers' performance periodically. A systematic cleaning scheduling strategy for the heat exchanger network in an oil refinery is proposed in this work. There are 11 operating heat exchangers in an oil refinery to be reviewed. Different cleaning decision scenarios based on the overall heat transfer coefficient are explored for optimal cleaning schedule performance. The daily number of exchangers available to be cleaned i.e., the unit cleanability, is investigated while minimizing the energy consumption and the additional heat requirement due to the offline heat exchanger under cleaning procedure. The HEN performance and the energy-saving from the cleaning procedures are benchmarked with the uncleaned HEN. The results indicate that the cleaning procedure significantly increases the HEN performance and simultaneously reduces the heat requirement if compared to the untreated HEN benchmark. The possible conflicting situation is discussed when some heat exchangers are waiting to be cleaned due to the unit cleanability restriction, which allows the overall heat transfer coefficient to be below the allowed limit. Therefore, nonconflicting cleaning scheduling is also addressed in this work by relaxing the unit cleanability limit. Furthermore, the optimal cleaning schedule is also suggested for user reference. In this work, the optimum cleaning schedule with minimum energy consumption and maximum energy saving could be achieved when cleaning decision limit is set at 40% decrease of overall heat transfer coefficient. In the contrast, the lowest number of cleaning procedures is associated with 90% decrease in the overall heat transfer coefficient as the cleaning decision limit.


Sign in / Sign up

Export Citation Format

Share Document