scholarly journals Using RBF- artificial neural network to model the heat transfer and pressure drop of aqueous nanofluids containing MgO nanoparticles

Author(s):  
Mohammad Hemmat Esfe ◽  
Mohammad Hasan Kamyab ◽  
Ali Alirezaie ◽  
Davood Toghraie
2018 ◽  
Vol 14 (2) ◽  
pp. 104-112 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Somchai Wongwises ◽  
Saeed Esfandeh ◽  
Ali Alirezaie

Background: Because of nanofluids applications in improvement of heat transfer rate in heating and cooling systems, many researchers have conducted various experiments to investigate nanofluid's characteristics more accurate. Thermal conductivity, electrical conductivity, and heat transfer are examples of these characteristics. Method: This paper presents a modeling and validation method of heat transfer coefficient and pressure drop of functionalized aqueous COOH MWCNT nanofluids by artificial neural network and proposing a new correlation. In the current experiment, the ANN input data has included the volume fraction and the Reynolds number and heat transfer coefficient and pressure drop considered as ANN outputs. Results: Comparing modeling results with proposed correlation proves that the empirical correlation is not able to accurately predict the experimental output results, and this is performed with a lot more accuracy by the neural network. The regression coefficient of neural network outputs was equal to 99.94% and 99.84%, respectively, for the data of relative heat transfer coefficient and relative pressure drop. The regression coefficient for the provided equation was also equal to 97.02% and 77.90%, respectively, for these two parameters, which indicates this equation operates much less precisely than the neural network. Conclusion: So, relative heat transfer coefficient and pressure drop of nanofluids can also be modeled and estimated by the neural network, in addition to the modeling of nanofluid’s thermal conductivity and viscosity executed by different scholars via neural networks.


Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


2020 ◽  
pp. 238-238
Author(s):  
Adel Bouali ◽  
Salah Hanini ◽  
Brahim Mohammedi ◽  
Mouloud Boumahdi

The flow and heat transfer characteristics in a nuclear power plant in the event of a serious accident are simulated by boiling water in an inclined rectangular channel. In this study an artificial neural network model was developed with the aim of predicting heat transfer coefficient (HTC) for flow boiling of water in inclined channel, the network was designed and trained by means of 520 experimental data points that were selected from within the literature. orientation ,mass flux, quality and heat flow which were employed to serve as variables of input of multiple layer perceptron (MLP) neural network, whereas the analogous HTC was selected to be its output. Via the method of trial-and-error, MLP network with 30 neurons in the hidden layer was attained as optimal ANN structure. The fact that is was enabled to predict accurately the HTC. For the training set, the mean relative absolute error (MRAE) is about 0.68 % and the correlation coefficient (R) is about 0.9997. As for the testing and validation set they are respectively about 0.60 % and 0.9998 and about 0.79 % and 0.9996. The comparison of the developed ANN model with experimental data and empirical correlations in vertical channel under the low flow rate and low quality shows a good agreement.


Sign in / Sign up

Export Citation Format

Share Document