An artificial-neural-network based prediction of heat transfer behaviors for in-tube supercritical CO2 flow

2021 ◽  
Vol 102 ◽  
pp. 107110
Author(s):  
Feng Sun ◽  
Gongnan Xie ◽  
Shulei Li
Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


2020 ◽  
pp. 238-238
Author(s):  
Adel Bouali ◽  
Salah Hanini ◽  
Brahim Mohammedi ◽  
Mouloud Boumahdi

The flow and heat transfer characteristics in a nuclear power plant in the event of a serious accident are simulated by boiling water in an inclined rectangular channel. In this study an artificial neural network model was developed with the aim of predicting heat transfer coefficient (HTC) for flow boiling of water in inclined channel, the network was designed and trained by means of 520 experimental data points that were selected from within the literature. orientation ,mass flux, quality and heat flow which were employed to serve as variables of input of multiple layer perceptron (MLP) neural network, whereas the analogous HTC was selected to be its output. Via the method of trial-and-error, MLP network with 30 neurons in the hidden layer was attained as optimal ANN structure. The fact that is was enabled to predict accurately the HTC. For the training set, the mean relative absolute error (MRAE) is about 0.68 % and the correlation coefficient (R) is about 0.9997. As for the testing and validation set they are respectively about 0.60 % and 0.9998 and about 0.79 % and 0.9996. The comparison of the developed ANN model with experimental data and empirical correlations in vertical channel under the low flow rate and low quality shows a good agreement.


Sign in / Sign up

Export Citation Format

Share Document