scholarly journals Corrigendum to “Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk”[Case Stud. Therm. Eng. 25 (2021) 100943]

Author(s):  
S. Saranya ◽  
Qasem M. Al-Mdallal
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


2021 ◽  
pp. 118240
Author(s):  
Yanpeng Shang ◽  
Reza Balali Dehkordi ◽  
Supat Chupradit ◽  
Davood Toghraie ◽  
Andrei Sevbitov ◽  
...  

Heat Transfer ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 619-637
Author(s):  
Muhammad S. Iqbal ◽  
Irfan Mustafa ◽  
Iram Riaz ◽  
Abuzar Ghaffari ◽  
Waqar A. Khan

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 387 ◽  
Author(s):  
Zahid Ahmed ◽  
Ali Al-Qahtani ◽  
Sohail Nadeem ◽  
Salman Saleem

This work presents a numerical investigation of viscous nanofluid flow over a curved stretching surface. Single-walled carbon nanotubes were taken as a solid constituent of the nanofluids. Dynamic viscosity was assumed to be an inverse function of fluid temperature. The problem is modeled with the help of a generalized theory of Eringen Micropolar fluid in a curvilinear coordinates system. The governing systems of non-linear partial differential equations consist of mass flux equation, linear momentum equations, angular momentum equation, and energy equation. The transformed ordinary differential equations for linear and angular momentum along with energy were solved numerically with the help of the Keller box method. Numerical and graphical results were obtained to analyze the flow characteristic. It is perceived that by keeping the dynamic viscosity temperature dependent, the velocity of the fluid away from the surface rose in magnitude with the values of the magnetic parameter, while the couple stress coefficient decreased with rising values of the magnetic parameter.


Sign in / Sign up

Export Citation Format

Share Document