New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean

2009 ◽  
Vol 29 (10) ◽  
pp. 1317-1328 ◽  
Author(s):  
Agneta Fransson ◽  
Melissa Chierici ◽  
Yukihiro Nojiri
2013 ◽  
Vol 7 (2) ◽  
pp. 1495-1532 ◽  
Author(s):  
B. A. Blazey ◽  
M. M. Holland ◽  
E. C. Hunke

Abstract. Sea ice cover in the Arctic Ocean is a continued focus of attention. This study assesses the capability of hindcast simulations of the Community Climate System Model (CCSM) to reproduce observed snow depths and densities overlying the Arctic Ocean sea ice. The model is evaluated using measurements provided by historic Russian polar drift stations. Following the identification of seasonal biases produced in the simulations, the thermodynamic transfer through the snow – ice column is perturbed to determine model sensitivity to these biases. This study concludes that perturbations on the order of the observed biases result in modification of the annual mean conductive flux of 0.5 W m−2 relative to an unmodified simulation. The results suggest that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. Consequently, we suggest that the inclusion of additional snow evolution processes such as blowing snow, densification, and seasonal changes in snow conductivity in sea ice models would increase the fidelity of the model with respect to the physical system. Moreover, our results suggest that simulated high latitude precipitation biases have important effects on the simulated ice conditions, resulting in impacts on the Arctic climate in general in large-scale climate.


Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 997-1016 ◽  
Author(s):  
Irina I. Pipko ◽  
Svetlana P. Pugach ◽  
Igor P. Semiletov ◽  
Leif G. Anderson ◽  
Natalia E. Shakhova ◽  
...  

Abstract. The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air–sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.


2016 ◽  
Author(s):  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Pedro Elosegui ◽  
Joaquim A. Pla-Resina ◽  
Marcos Portabella

Abstract. We present a new method to estimate sea ice concentration in the Arctic Ocean using brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) interferometric satellite. The method, which employs a Maximum Likelihood Estimator (MLE), exploits the marked difference in radiative properties between sea ice and seawater, in particular when observed over the wide range of satellite viewing angles afforded by SMOS. Observations at L-band frequencies such as those from SMOS (i.e., 1.4 GHz, or equivalently 21-cm wavelength) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency. We find that sea ice concentration is well determined (correlations of about 0.75) as compared to estimates from other sensors such as the Special Sensor Microwave/Imager (SSM/I and SSMIS). We also find that the efficacy of the method decreases under thin sea ice conditions (ice thickness


2021 ◽  
Vol 8 ◽  
Author(s):  
Odile Crabeck ◽  
Karley Campbell ◽  
Sebastien Moreau ◽  
Max Thomas

Every winter, a frozen blanket known as sea ice completely covers the Arctic Ocean. For centuries, sea ice has been viewed as a solid lid on the ocean that acts as a boundary to block gases traveling between the ocean and the atmosphere. However, scientific discoveries over recent years have shown that sea ice is more like a sponge, a porous substance that is also home to microscopic life forms. The pores in sea ice are filled with very salty liquid called brine that is rich in carbon dioxide (CO2). These liquid pockets create a network of tubes or channels that move gases like CO2, similar to the way veins and arteries move blood in our bodies. In this article, you will discover how CO2 enters, exits, and is transformed in one of the harshest environments on Earth.


2021 ◽  
Author(s):  
Yuanxu Dong ◽  
Dorothee Bakker ◽  
Thomas Bell ◽  
Peter Liss ◽  
Ian Brown ◽  
...  

<p>Air-sea carbon dioxide (CO<sub>2</sub>) flux is often indirectly estimated by the bulk method using the i<em>n-situ</em> air-sea difference in CO<sub>2</sub> fugacity and a wind speed dependent parameterisation of the gas transfer velocity (<em>K</em>). In the summer, sea-ice melt in the Arctic Ocean generates strong shallow stratification with significant gradients in temperature, salinity, dissolved inorganic carbon (DIC) and alkalinity (TA), and thus a near-surface CO<sub>2</sub> fugacity  (<em>f</em>CO<sub>2w</sub>) gradient. This gradient can cause an error in bulk air-sea CO<sub>2</sub> flux estimates when the <em>f</em>CO<sub>2w</sub> is measured by the ship’s underway system at ~5 m depth. Direct air-sea CO<sub>2</sub> flux measurement by eddy covariance (EC) is free from the impact of shallow stratification because the EC CO<sub>2</sub> flux does not rely on a <em>f</em>CO<sub>2w</sub> measurement. In this study, we use summertime EC flux measurements from the Arctic Ocean to back-calculate the sea surface <em>f</em>CO<sub>2w</sub> and temperature and compare them with the underway measurements. We show that the EC air-sea CO<sub>2</sub> flux agrees well with the bulk flux in areas less likely to be influenced by ice melt (salinity > 32). However, in regions with salinity less than 32, the underway <em>f</em>CO<sub>2w</sub> is higher than the EC estimate of surface <em>f</em>CO<sub>2w</sub> and thus the bulk estimate of ocean CO<sub>2</sub> uptake is underestimated. The <em>f</em>CO<sub>2w</sub> difference can be partly explained by the surface to sub-surface temperature difference. The EC estimate of surface temperature is lower than the sub-surface water temperature and this difference is wind speed-dependent. Upper-ocean salinity gradients from CTD profiles suggest likely difference in DIC and TA concentrations between the surface and sub-surface water. These DIC and TA gradients likely explain much of the near-surface <em>f</em>CO<sub>2w</sub> gradient. Accelerating summertime loss of sea ice results in additional meltwater, which enhances near-surface stratification and increases the uncertainty of bulk air-sea CO<sub>2</sub> flux estimates in polar regions.</p>


Author(s):  
Naja Mikkelsen ◽  
Preben Gudmandsen ◽  
René Forsberg

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Mikkelsen, N., Gudmandsen, P., & Forsberg, R. (2001). Studies of sea-ice conditions north of Greenland: results from a pilot GRASP initiative on the extension of territorial limits into the Arctic Ocean. Geology of Greenland Survey Bulletin, 189, 127-131. https://doi.org/10.34194/ggub.v189.5168 _______________ The continental shelf and Arctic Ocean north of Greenland are located in one of the least investigated regions of the Arctic. Even basic data on bathymetry are known only in rudimentary form from historical expeditions, a few scientific ice-floe stations and icebreaker traverses, and from rare United States and Russian map compilations. No official Danish nautical charts of the region exist, and it is only within the last 20 years that the coastline of North Greenland facing the Arctic Ocean has been precisely mapped. Interest in the region has increased in recent years through major international efforts such as scientific submarine expeditions (SCICEX), major airborne geophysical surveys and the release and compilation of formerly classified oceanographic, hydrographic and climate-related data. Analyses of data from the submarine cruises have indicated a thinning of the polar seaice cover (Rothrock et al. 1999).


2017 ◽  
Author(s):  
Irina I. Pipko ◽  
Svetlana P. Pugach ◽  
Igor P. Semiletov ◽  
Leif G. Anderson ◽  
Natalia E. Shakhova ◽  
...  

Abstract. The Arctic now is undergoing dramatic changes, which cover the entire range of natural processes; from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of the carbon cycle dynamics under conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water pCO2 distribution, which manifested as an increase in pCO2 values eastward. Existence of this trend was determined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoked a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007, which was characterized by the next-to-lowest historic sea ice extent in the Arctic Ocean to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large open, highly-productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, a growing CO2 evasion occurs in the outer shelf and slope waters of the East Siberian Arctic seas as a result of the increasing influence of river runoff and degradation of terrestrial organic matter, in combination with the high surface-water temperature due to the warm air temperature and decreasing albedo during sea ice free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air-sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.


2020 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Yulia A. Frank ◽  
Egor D. Vorobiev ◽  
Danil S. Vorobiev ◽  
Andrey A. Trifonov ◽  
Dmitry V. Antsiferov ◽  
...  

To date, the largest Russian rivers discharging to the Arctic Ocean remain a “blank spot” on the world map of data on the distribution of microplastics in freshwater systems. This study characterizes the abundance and morphology of microplastics in surface water of the Ob River and its large tributary, the Tom River, in western Siberia. The average number of particles for the two rivers ranged from 44.2 to 51.2 items per m3 or from 79.4 to 87.5 μg per m3 in the Tom River and in the Ob River, respectively. Of the recovered microplastics, 93.5% were less than 1 mm in their largest dimension, the largest group (45.5% of total counts) consisted of particles with sizes range 0.30–1.00 mm. Generally, microfragments of irregular shape were the most abundant among the Ob and Tom samples (47.4%) and exceeded microfibers (22.1%), microfilms (20.8%), and microspheres (9.74%) by average counts. Results from this study provide a baseline for understanding the scale of the transport of microplastics by the Ob River system into the Arctic Ocean and add to currently available data on microplastics abundance and diversity in freshwater systems of differing global geographic locations.


Sign in / Sign up

Export Citation Format

Share Document