Effect of the chemical milling process on the surface of titanium aluminide castings

2017 ◽  
Vol 29 (1) ◽  
pp. e40-e45
Author(s):  
Rui Neto ◽  
Teresa Duarte ◽  
Jorge Lino Alves ◽  
Francisco Torres ◽  
João Pinto
Author(s):  
Chau Chen Torng ◽  
Chikong Huang ◽  
Hsien Ming Chang

2020 ◽  
Vol 5 (1) ◽  
pp. 36-41
Author(s):  
Yovial Mahyoedin ◽  
Jamasri Jamasri ◽  
Rizky Arman ◽  
Wenny Marthiana ◽  
Suryadima Suryadima

AbstrakPenelitian ini bertujuan untuk mengetahui pengaruh shot peening terhadap kekasaran permukaan produk pembuatan kimia Al 2524-T3 dan Al 2024-T3 yang telah diregangkan. Paduan ini direntangkan melampaui tegangan luluh, yaitu masing-masing 1%, 3% dan 5%, dan kemudian dilakukan proses penggilingan kimia di satu sisi. Etching yang digunakan dalam proses penggilingan kimia adalah larutan NaOH + Na2S + H2O dengan konsentrasi tertentu. Permukaan dilakukan proses shot peening dengan intensitas yang bervariasi masing-masing 0,03 A, 0,05 A dan 0,07 A. Bahan itu kemudian diuji kekasaran permukaan dan kekerasannya. Hasil penelitian menunjukkan bahwa kekasaran permukaan dan kekerasan material meningkat dengan meningkatnya intensitas peening. Namun, ketebalan Al 2524-T3, yang lebih tipis dari Al 2024-T3 menyebabkan tidak signifikannya proses peening shot yang diberikan pada material.. Kata kunci: Shot Peening, Chemical Milling, Kekerasan, Kekasaran Permukaan AbstractThis study aims to investigate the influence of shot peening on hardness and surface roughness of chemical mlling product Al 2524-T3 and Al 2024-T3 which have been stretched. These alloys were stretched beyond yield stress, namely 1%, 3% and 5% of each, and then performed chemical milling process of one side. The etching used in chemical milling process were NaOH+Na2S+H2O solutions with certain concentration. The surface was performed shot peening process with varying intensity of 0.03 A, 0.05 A and 0.07 A respectively. The material were then tested its surface roughness and hardness. The results show that surface roughness and hardness of material increases with the increase of peening intensity. However, the thickness of Al 2524–T3, which is thinner than Al 2024-T3 causing insignificance of the shot peening process given to the materials. Keywords: Shot Peening, Chemical Milling, Hardness, Surface Roughness


2010 ◽  
Author(s):  
C. Leone ◽  
V. Lopresto ◽  
F. Memola Capece Minutolo ◽  
I. De Iorio ◽  
N. Rinaldi

Author(s):  
Mohamed Hashish

A study was undertaken to determine the feasibility of the AWJ process for controlled depth milling of gamma Titanium Aluminide tiles. It was demonstrated that milling can be accomplished to 0.025-mm accuracy. To overcome undercutting near rib roots, the jet was clock-angled at about 15 degrees to the vertical every set of passes. This allowed the milling to thin skins of about 0.5-mm. It was observed that as the material is milled, stresses were relieved and either deformation or cracking may result. Accordingly parts need to be annealed before milling. The milling to thin skins was successfully demonstrated on 150mm × 300-mm parts without adverse effects. Also, the process of milling of dual rib height was developed using dual mask approach. Abrasive particle embedding on the milled surfaces was observed to be about 0.15% of the area, but cleaning with plain waterjets showed that all embedded particles can be removed. A detailed economic analysis confirmed that the AWJ milling process is relatively inexpensive and highly productive. The complete cost of milling including mask cutting, overhead, capital, and running cost is less than $300/ft2.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-9
Author(s):  
S. Castellanos ◽  
J. Lino Alves

Intermetallic titanium aluminide alloys are used in the high technology engineering field with the goal of achieving weight reduction in different components, exposed to corrosive environments and high temperatures in aeronautical and automotive industries. Despite their attractive properties such as low density, high strength, high stiffness and good corrosion, creep and oxidation resistance, the machinability of titanium aluminide alloys is difficult due to its high hardness, chemical reactivity, and low ductility. This article reviews the state of the art regarding the machinability of titanium aluminide alloys and focuses on the analysis of the milling process, namely the process parameters, surface integrity and cutting tools. The influence of titanium aluminides properties on the machinability is also discussed presenting some current trends and further needed research.


Author(s):  
Mohamed Hashish

A study was undertaken to determine the feasibility of the AWJ process for controlled depth milling of gamma Titanium Aluminide tiles. It was demonstrated that milling can be accomplished to 0.025-mm accuracy. To overcome undercutting near rib roots, the jet was clock-angled at about 15 deg to the vertical every set of passes. This allowed the milling to thin skins of about 0.5-mm. It was observed that as the material is milled, stresses were relieved, and either deformation or cracking may result. Accordingly, parts need to be annealed before milling. The milling to thin skins was successfully demonstrated on 150×300 mm2 parts without adverse effects. Also, the process of milling of the dual rib height was developed using the dual mask approach. Abrasive particle embedding on the milled surfaces was observed to be about 0.15% of the area, but cleaning with plain waterjets showed that all embedded particles can be removed. A detailed economic analysis confirmed that the AWJ milling process is relatively inexpensive and highly productive. The complete cost of milling including mask cutting, overhead, capital, and running cost is less than 300 USD/ft2.


2020 ◽  
Vol 5 (2) ◽  
pp. 129-133
Author(s):  
Yovial Mahyoedin ◽  
Jamasri Jamasri ◽  
Wenny Marthiana ◽  
Duskiardi Duskiardi ◽  
Rizky Arman

AbstrakPenelitian ini bertujuan untuk mengetahui perilaku uji tarik produk Al 2524-T3 dan Al 2024-T3 yang mengalami proses peregangan, chemical milling dan shot peening. Paduan ini diregangkan melebihi tegangan yeildnya masing-masing 1%, 3% dan 5%, kemudian dilakukan proses chemical milling satu sisi. Etsa yang digunakan dalam proses milling kimia adalah larutan NaOH + Na2S + H2O dengan konsentrasi tertentu. Pada permukaan dilakukan proses shot peening dengan variasi intensitas masing-masing 0,03 A, 0,05 A dan 0,07 A. Material tersebut kemudian diuji sifat mekaniknya dengan uji tarik. Hasil penelitian menunjukkan bahwa tegangan ultimate dan tegangan yield material meningkat dengan meningkatnya persentase regangan. Namun, perpanjangan juga meningkat yang menunjukkan bahwa proses peregangan justru meningkatkan keuletan. Di sisi lain, proses shot peening menurunkan elongasi yang mengindikasikan bahwa proses shot peening menyebabkan penurunan keuletan material. Kata kunci: pengujian tarik, chemical milling, shot peening, stretchingAbstractThis study aims to investigate the tensile test behaviour of Al 2524-T3 and Al 2024-T3 product, which undergoes stretching, chemical milling and shot peening processes. These alloys were stretched beyond yield stress, namely 1%, 3% and 5% of each, and then performed chemical milling process of one side. The etching used in chemical milling process were NaOH+Na2S+H2O solutions with certain concentration. The surface was performed shot peening process with varying intensity of 0.03 A, 0.05 A and 0.07 A respectively. The material then tested its mechanical properties by tensile test. The results show that ultimate and yield stress of material increases with the increase of stretching percentage. However, the elongation has also increased which indicates that stretching process actually increases the ductility. On the other hand, the shot peening process decreases the elongation which indicates that the shot peening process causes a reduction in the ductility of the material.  Keywords: tensile tes, chemical milling, shot peening, stretching


Sign in / Sign up

Export Citation Format

Share Document