Potentially probiotic bacteria induce cytokine production and suppressor of cytokine signaling 3 gene expression in human monocyte-derived macrophages

Cytokine ◽  
2009 ◽  
Vol 48 (1-2) ◽  
pp. 100-101 ◽  
Author(s):  
Sinikka Latvala ◽  
Minja Miettinen ◽  
Riina Kekkonen ◽  
Riitta Korpela ◽  
Ilkka Julkunen
2009 ◽  
Vol 201 (3) ◽  
pp. 369-376 ◽  
Author(s):  
Kazunori Kageyama ◽  
Komaki Hanada ◽  
Yasumasa Iwasaki ◽  
Toshihiro Suda

Corticotropin-releasing factor (CRF) plays a central role in regulating stress responses. In the hypothalamic paraventricular nucleus (PVN), CRF, produced in response to stress, stimulates the release of ACTH from the anterior pituitary. ACTH then stimulates the release of glucocorticoids from the adrenal glands; circulating glucocorticoids are critical for recovery from stress conditions. Cytokines are also implicated in the regulation of CRF expression. Among them, interleukin (IL)-6 plays a role in the regulation of CRF. Factors other than glucocorticoids are likely to be involved in limiting the stimulation of CRF during stress. Suppressor of cytokine signaling (SOCS)-3 acts as a potent negative regulator of cytokine signaling. Little is known about the ability of the inhibitory signaling pathways to limit activation of the CRF gene in parvocellular PVN neurons. Hypothalamic 4B cells are useful for exploring the mechanisms, because these cells show characteristics of the parvocellular neurons of the PVN. In the present study, we examined whether SOCS-3 is regulated by IL-6 and cAMP in hypothalamic 4B cells. We also explored the involvement of SOCS-3 in the regulation of CRF gene expression. SOCS-3 was found to be regulated by IL-6 and via the cAMP/protein kinase A pathway in the hypothalamic cells. SOCS-3 knockdown increased IL-6- or forskolin-induced CRF gene transcription and mRNA levels. Therefore, SOCS-3, induced by a cAMP stimulant and IL-6, would be involved in the negative regulation of CRF gene expression in hypothalamic cells.


2012 ◽  
Vol 178 (3) ◽  
pp. 450-458 ◽  
Author(s):  
Hsin-Huei Chang ◽  
Yao-Ming Huang ◽  
Chi-Peng Wu ◽  
Ya-Chu Tang ◽  
Chi-Wei Liu ◽  
...  

2008 ◽  
Vol 14 (36) ◽  
pp. 5570 ◽  
Author(s):  
Sinikka Latvala ◽  
Taija E Pietilä ◽  
Ville Veckman ◽  
Riina A Kekkonen ◽  
Soile Tynkkynen ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1362-1362
Author(s):  
Erin K Hertlein ◽  
Timothy L. Chen ◽  
Rainer Claus ◽  
Christoph Plass ◽  
Amy Lehman ◽  
...  

Abstract Abstract 1362 Epigenetic or transcriptional silencing of important tumor suppressors has been described to contribute to cell survival and tumorigenesis in chronic lymphocytic leukemia (CLL). We investigated gene silencing in CLL using gene expression microarray analysis, and found that over 2000 genes are repressed more than 2-fold in CLL B cells compared to normal B cells, including genes involved in cell signaling and survival (Jun/Fos signaling, ATF family, cyclin dependent kinases and suppressors of cytokine signaling). In particular, the suppressor of cytokine signaling protein 3 (SOCS3) was decreased 60-fold in CLL B cells compared to peripheral blood B cells from normal donors. Despite this profound effect, few therapeutic approaches have focused on reversing this gene silencing in CLL. NF-κB has been shown to transcriptionally silence gene expression in several types of cancer, and our group has previously identified a similar role for this transcription factor in CLL. In addition, we have previously shown that the Hsp90 inhibitor 17-DMAG targets NF-κB signaling to induce apoptosis in CLL through transcriptional down-regulation of oncogenes such as MCL1 and BCL2. However, our microarray analysis revealed that treatment with 17-DMAG also leads to the re-expression of nearly 200 genes silenced in CLL compared to normal B cells. One of the genes significantly silenced in CLL and re-expressed by 17-DMAG is SOCS3. This increase in SOCS3 was evident as early as 8 hours following treatment with 17-DMAG, and peaking at 16–24 hours just prior to 17-DMAG induced cell death (up-regulated 5.6 fold at 8 hours, 59.8 fold at 16 hours, and 25.7 fold at 24 hours). The magnitude of induction in CLL cells was significantly greater than SOCS3 induction in peripheral blood B cells from normal donors, which correlates with a decreased apoptotic response of normal B cells to 17-DMAG (25.7 fold up-regulated in CLL versus 3.5 fold in normal B cells). While little is known about its regulation or functional impact in CLL, SOCS3 has been shown to be methylated in solid tumors as well as myeloid leukemia, leading to aberrant cytokine production and cell survival. While it is known that promoter hypermethylation and subsequent gene silencing contributes to CLL disease progression, we found that there was no significant methylation of the SOCS3 promoter in CLL compared to normal B lymphocytes, indicating an alternative mechanism of SOCS3 silencing in CLL. In order to further characterize the downstream effect of SOCS3 regulation, we investigated the pathways known to be regulated by this protein, specifically IL-6 and CXCR4 signaling. We found that 17-DMAG prevents phosphorylation of STAT3 induced by IL-6 stimulation, which leads to decreased production of pro-survival cytokines including negative feedback by decreasing IL-6 itself. While STAT3 is a known Hsp90 client protein, the effect on phosphorylation of STAT3 was evident before a decrease in the total protein was observed, indicating a distinct effect on the signaling pathway independent of Hsp90's role as a protein chaperone. SOCS3 has also been shown to prevent phosphorylation of focal adhesion kinase (FAK) and therefore block both integrin and CXCR4 signaling pathways. We found that 17-DMAG prevents constitutive phosphorylation of FAK in primary CLL cells, and subsequently reduces AKT phosphorylation following recombinant SDF-1 stimulation. In order to determine if 17-DMAG inhibits migration of CLL cells towards recombinant SDF-1 as well as the direct signaling through the CXCR4 receptor, we performed transwell migration assays and found that 17-DMAG significantly inhibits migration towards both recombinant SDF-1 and CXCL13 (migration towards CXCL12, 12.4% with Vehicle vs. 8.9% with 17-DMAG, p=0.0061, towards CXCL13, 12.4% with Vehicle vs. 6.1% with 17-DMAG, p<0.0001). Similar results were obtained by over-expression of SOCS3 in a CLL B cell line, suggesting that 17-DMAG inhibits migration through an increase in SOCS3. Based on these results, we suggest that 17-DMAG reverses gene silencing in CLL, and through re-expression SOCS3 inhibits the migration and signaling associated with SDF-1/CXCR4, an important factor in the tumor microenvironment that contributes to CLL cell survival. Therefore Hsp90 inhibitors represent a novel approach to target transcriptional silencing in CLL and other B cell lymphoproliferative disorders. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 289 (6) ◽  
pp. E1051-E1057 ◽  
Author(s):  
Christopher D. Morrison ◽  
Gregory J. Morton ◽  
Kevin D. Niswender ◽  
Richard W. Gelling ◽  
Michael W. Schwartz

Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y ( Npy) and agouti-related peptide ( Agrp) gene expression, male Sprague-Dawley rats ( n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h intervals, the PI3K inhibitor LY-294002 (LY, 1 nmol) or vehicle was injected intracerebroventricularly (ICV) as a pretreatment, followed 1 h later by leptin (3 μg icv) or vehicle. Fasting increased hypothalamic Npy and Agrp mRNA levels ( P < 0.05), and ICV leptin administration prevented this increase. As predicted, LY pretreatment blocked this inhibitory effect of leptin, such that Npy and Agrp levels in LY-leptin-treated animals were similar to fasted controls. By comparison, leptin-mediated activation of hypothalamic STAT3 signaling, as measured by induction of both phospho-STAT3 immunohistochemistry and suppressor of cytokine signaling-3 ( Socs3) mRNA, was not significantly attenuated by ICV LY pretreatment. Because NPY/AgRP neurons project to the hypothalamic paraventricular nucleus (PVN), we next investigated whether leptin activation of PVN neurons is similarly PI3K dependent. Compared with vehicle, leptin increased the number of c-Fos positive cells within the parvocellular PVN ( P = 0.001), and LY pretreatment attenuated this effect by 35% ( P = 0.043). We conclude that leptin requires intact PI3K signaling both to inhibit hypothalamic Npy and Agrp gene expression and activate neurons within the PVN. In addition, these data suggest that leptin activation of STAT3 is insufficient to inhibit expression of Npy or Agrp in the absence of PI3K signaling.


2005 ◽  
Vol 25 (4) ◽  
pp. 1569-1575 ◽  
Author(s):  
Claire M. Steppan ◽  
Juan Wang ◽  
Eileen L. Whiteman ◽  
Morris J. Birnbaum ◽  
Mitchell A. Lazar

ABSTRACT Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is ∼20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.


Sign in / Sign up

Export Citation Format

Share Document