scholarly journals Gravitational origin of dark matter and Majorana neutrino mass with non-minimal quartic inflation

2021 ◽  
pp. 100858
Author(s):  
Debasish Borah ◽  
Suruj Jyoti Das ◽  
Abhijit Kumar Saha
2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Madan Singh

We have studied that the implication of a large value of the effective Majorana neutrino mass in case of neutrino mass matrices has either two equal elements and one zero element (popularly known as hybrid texture) or two equal cofactors and one zero minor (popularly known as inverse hybrid texture) in the flavor basis. In each of these cases, four out of sixty phenomenologically possible patterns predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. This feature remains irrespective of the experimental data on solar and reactor mixing angles. In addition, we have also performed the comparative study of all the viable cases of hybrid and inverse hybrid textures at 3σ CL.


2020 ◽  
Vol 101 (7) ◽  
Author(s):  
I. Cordero-Carrión ◽  
M. Hirsch ◽  
A. Vicente

2019 ◽  
Vol 34 (25) ◽  
pp. 1950198
Author(s):  
V. V. Vien ◽  
D. P. Khoi

We construct a renormalizable [Formula: see text] model with [Formula: see text] symmetry accommodating the observed pattern of fermion masses and mixings with Dirac CP violation phase. The smallness of the active neutrino masses arises from a combination of type I and type II seesaw mechanisms. Both normal and inverted neutrino mass ordering are viable in our model in which the obtained physical observables of the lepton sector are well consistent with the global fit of neutrino oscillation data [P. F. de Salas et al., Phys. Lett. B 782, 633 (2018)] while the CKM matrix is unity at tree level and the quark masses are in good agreement with the experimental data [Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)]. Furthermore, the model also predicts an effective Majorana neutrino mass parameter of [Formula: see text] eV for normal hierarchy and [Formula: see text] for inverted hierarchy which are consistent with the constraints given in [P. F. de Salas et al., Phys. Lett. B 782, 633 (2018)].


1999 ◽  
Vol 83 (1) ◽  
pp. 41-44 ◽  
Author(s):  
L. Baudis ◽  
A. Dietz ◽  
G. Heusser ◽  
H. V. Klapdor-Kleingrothaus ◽  
I. V. Krivosheina ◽  
...  

2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Zackaria Chacko ◽  
P. S. Bhupal Dev ◽  
Rabindra N. Mohapatra ◽  
Anil Thapa

2019 ◽  
Vol 34 (01) ◽  
pp. 1950005 ◽  
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
A. E. Cárcamo Hernández

We propose a renormalizable T′ flavor model based on the [Formula: see text] gauge symmetry, consistent with the observed pattern of lepton masses and mixings. The small masses of the light active neutrinos are produced from an interplay of type I and type II seesaw mechanisms, which are induced by three heavy right-handed Majorana neutrinos and three [Formula: see text] scalar antisextets, respectively. Our model is only viable for the scenario of normal neutrino mass hierarchy, where the obtained physical observables of the lepton sector are highly consistent with the current neutrino oscillation experimental data. In addition, our model also predicts an effective Majorana neutrino mass parameter of [Formula: see text] eV, a Jarlskog invariant of the order of [Formula: see text] and a leptonic Dirac CP violating phase of [Formula: see text], which is inside the [Formula: see text] experimentally allowed range.


Sign in / Sign up

Export Citation Format

Share Document