scholarly journals Lepton masses and mixings in a T′ flavored 3-3-1 model with type I and type II seesaw mechanisms

2019 ◽  
Vol 34 (01) ◽  
pp. 1950005 ◽  
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
A. E. Cárcamo Hernández

We propose a renormalizable T′ flavor model based on the [Formula: see text] gauge symmetry, consistent with the observed pattern of lepton masses and mixings. The small masses of the light active neutrinos are produced from an interplay of type I and type II seesaw mechanisms, which are induced by three heavy right-handed Majorana neutrinos and three [Formula: see text] scalar antisextets, respectively. Our model is only viable for the scenario of normal neutrino mass hierarchy, where the obtained physical observables of the lepton sector are highly consistent with the current neutrino oscillation experimental data. In addition, our model also predicts an effective Majorana neutrino mass parameter of [Formula: see text] eV, a Jarlskog invariant of the order of [Formula: see text] and a leptonic Dirac CP violating phase of [Formula: see text], which is inside the [Formula: see text] experimentally allowed range.

2019 ◽  
Vol 34 (25) ◽  
pp. 1950198
Author(s):  
V. V. Vien ◽  
D. P. Khoi

We construct a renormalizable [Formula: see text] model with [Formula: see text] symmetry accommodating the observed pattern of fermion masses and mixings with Dirac CP violation phase. The smallness of the active neutrino masses arises from a combination of type I and type II seesaw mechanisms. Both normal and inverted neutrino mass ordering are viable in our model in which the obtained physical observables of the lepton sector are well consistent with the global fit of neutrino oscillation data [P. F. de Salas et al., Phys. Lett. B 782, 633 (2018)] while the CKM matrix is unity at tree level and the quark masses are in good agreement with the experimental data [Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)]. Furthermore, the model also predicts an effective Majorana neutrino mass parameter of [Formula: see text] eV for normal hierarchy and [Formula: see text] for inverted hierarchy which are consistent with the constraints given in [P. F. de Salas et al., Phys. Lett. B 782, 633 (2018)].


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
M. K. Parida ◽  
Rajesh Satpathy

Very recently novel implementation of type-II seesaw mechanism for neutrino mass has been proposed in SU(5) grand unified theory with a number of desirable new physical phenomena beyond the standard model. Introducing heavy right-handed neutrinos and extra fermion singlets, in this work we show how the type-I seesaw cancellation mechanism works in this SU(5) framework. Besides predicting verifiable LFV decays, we further show that the model predicts dominant double beta decay with normal hierarchy or inverted hierarchy of active light neutrino masses in concordance with cosmological bound. In addition a novel right-handed neutrino mass generation mechanism, independent of type-II seesaw predicted mass hierarchy, is suggested in this work.


2019 ◽  
Vol 34 (39) ◽  
pp. 1950329 ◽  
Author(s):  
Newton Nath

The minimal seesaw framework, embroiling the Dirac neutrino mass matrix [Formula: see text] and the Majorana neutrino mass matrix [Formula: see text], is quite successful to explain the current global-fit results of neutrino oscillation data. In this context, we consider the most predictive forms of [Formula: see text] and [Formula: see text] with two simple parameters, respectively. Considering these matrices, we obtain the low-energy neutrino mass matrix under type-I seesaw formalism which obeys [Formula: see text] reflection symmetry and predicts [Formula: see text] and [Formula: see text]. In the given set-up, we also evaluate the Baryon Asymmetry of the Universe (BAU) through successful leptogenesis and find that perturbation of [Formula: see text] leads to the observed BAU and breaks exactness of the symmetry. Moreover, we also perform various correlation studies among different parameters in the framework of broken symmetry.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sabin Stoica ◽  
Andrei Neacsu

The study of the neutrinoless double beta(0νββ)decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the0νββdecay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetime limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from the literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with different methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an updated image on the present neutrino mass sensitivities associated with0νββmeasurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
A. E. Cárcamo Hernández ◽  
Ivo de Medeiros Varzielas ◽  
M. L. López-Ibáñez ◽  
Aurora Melis

Abstract We propose a 3+1 Higgs Doublet Model based on the ∆(27) family symmetry supplemented by several auxiliary cyclic symmetries leading to viable Yukawa textures for the Standard Model fermions, consistent with the observed pattern of fermion masses and mixings. The charged fermion mass hierarchy and the quark mixing pattern is generated by the spontaneous breaking of the discrete symmetries due to flavons that act as Froggatt-Nielsen fields. The tiny neutrino masses arise from a radiative seesaw mechanism at one loop level, thanks to a preserved $$ {Z}_2^{(1)} $$ Z 2 1 discrete symmetry, which also leads to stable scalar and fermionic dark matter candidates. The leptonic sector features the predictive cobimaximal mixing pattern, consistent with the experimental data from neutrino oscillations. For the scenario of normal neutrino mass hierarchy, the model predicts an effective Majorana neutrino mass parameter in the range 3 meV ≲ mββ ≲ 18 meV, which is within the declared range of sensitivity of modern experiments. The model predicts Flavour Changing Neutral Currents which constrain the model, for instance, μ→e nuclear conversion processes and Kaon mixing are found to be within the reach of the forthcoming experiments.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Bikash Thapa ◽  
Ng. K. Francis

AbstractWe present an S$$_4$$ 4 flavour symmetric model within a minimal seesaw framework resulting in mass matrices that leads to TM$$_1$$ 1 mixing. Minimal seesaw is realized by adding two right-handed neutrinos to the Standard Model. The model predicts Normal Hierarchy (NH) for neutrino masses. Using the constrained six-dimensional parameter space of the model, we have evaluated the effective Majorana neutrino mass, which is the parameter of interest in neutrinoless double beta decay experiments. The possibility of explaining baryogenesis via resonant leptogenesis is also examined within the model. A non-zero, resonantly enhanced CP asymmetry generated from the decay of right-handed neutrinos at the TeV scale is studied, considering flavour effects. The evolution of lepton asymmetry is discussed by solving the set of Boltzmann equations numerically and obtain the value of baryon asymmetry to be $$|\eta _B| = 6.3 \times 10^{-10}$$ | η B | = 6.3 × 10 - 10 with the choice of right-handed neutrino mass, $$M_1 = 10$$ M 1 = 10 TeV and mass splitting, $$d \simeq 10^{-8}$$ d ≃ 10 - 8 .


2020 ◽  
Vol 35 (20) ◽  
pp. 2050165 ◽  
Author(s):  
Surender Verma ◽  
Monal Kashav

We have investigated the phenomenological implications of texture one-zero neutrino mass matrix under the lamp post of the latest data on neutrino mass and mixings. In particular, we have obtained the predictions of the model for, yet unknown observables like neutrino mass hierarchy, [Formula: see text]-octant and CP violation. Out of the six texture one-zero neutrino mass models, [Formula: see text], [Formula: see text] and [Formula: see text] are found to be necessarily CP violating. [Formula: see text] can be above or below maximality except for the texture [Formula: see text] (with NH), wherein [Formula: see text] at [Formula: see text]. Also, we have proposed a flavor model based on the non-Abelian group [Formula: see text] within the paradigm of type-I+II seesaw framework, wherein such textures can be realized.


2019 ◽  
Vol 35 (04) ◽  
pp. 2050003 ◽  
Author(s):  
V. V. Vien ◽  
N. V. Soi

We suggest a renormalizable standard model (SM) extension based on [Formula: see text] symmetry which accommodates leptonic mass and mixing parameters with nonzero [Formula: see text] and Dirac CP violating phase. Both normal and inverted neutrino mass ordering as well as the smallness of the active neutrino masses are generated at leading order through type-I seesaw mechanism in which the obtained physical parameters are well consistent with the global fit of neutrino oscillation data [P. F. de Salas et al., Phys. Lett. B 782, 633 (2018)], while the quark masses are in good agreement with the recent experimental data [Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)]. The model also predicts an effective Majorana neutrino mass parameter of [Formula: see text] for normal hierarchy and [Formula: see text] for inverted hierarchy which are all well below the most current upper limit given [P. F. de Salas et al., Front. Astron. Space Sci. 5, 36 (2018); CUORE Collab. (C. Alduino et al.), Phys. Rev. Lett. 120, 132501 (2018)] and beyond the reach of the present [Formula: see text] decay experiments.


Sign in / Sign up

Export Citation Format

Share Document