scholarly journals Effect of perfect fluid dark matter on particle motion around a static black hole immersed in an external magnetic field

2021 ◽  
pp. 100891
Author(s):  
Sanjar Shaymatov ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov
2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Bakhtiyor Narzilloev ◽  
Javlon Rayimbaev ◽  
Sanjar Shaymatov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
...  

Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 44 ◽  
Author(s):  
Kamoliddin Haydarov ◽  
Ahmadjon Abdujabbarov ◽  
Javlon Rayimbaev ◽  
Bobomurat Ahmedov

Magnetized particle motion around black holes in conformal gravity immersed in asymptotically uniform magnetic field has been studied. We have also analyzed the behavior of magnetic fields near the horizon of the black hole in conformal gravity and shown that with the increase of conformal parameters L and N the value of angular component of magnetic field at the stellar surface decreases. The maximum value of the effective potential corresponding to circular motion of the magnetized particle increases with the increase of conformal parameters. It is shown that in all cases of neutral, charged and magnetized particle collisions in the black hole environment the center-of-mass energy decreases with the increase of conformal parameters L and N. In the case of the magnetized and negatively charged particle collisions, the innermost collision point with the maximum center-of-mass energy comes closer to the central object due to the effects of the parameters of the conformal gravity. We have applied the results to the real astrophysical scenario when a pulsar treated as a magnetized particle is orbiting the super massive black hole (SMBH) Sgr A* in the center of our galaxy in order to obtain the estimation of magnetized compact object’s orbital parameter. The possible detection of pulsar in Sgr A* close environment can provide constraints on black hole parameters. Here we have shown that there is degeneracy between spin of SMBH and ambient magnetic field and consequently the interaction of magnetic field ∼ 10 2 Gauss with magnetic moment of magnetized neutron star can in principle mimic spin of Kerr black holes up to 0.6 .


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Javlon Rayimbaev ◽  
Sanjar Shaymatov ◽  
Mubasher Jamil

AbstractIn this paper, we investigate circular orbits for test particles around the Schwarzschild–de Sitter (dS) black hole surrounded by perfect fluid dark matter. We determine the region of circular orbits bounded by innermost and outermost stable circular orbits. We show that the impact of the perfect fluid dark matter shrinks the region where circular orbits can exist as the values of both innermost and outermost stable circular orbits decrease. We find that for specific lower and upper values of the dark matter parameter there exist double matching values for inner and outermost stable circular orbits. It turns out that the gravitational attraction due to the dark matter contribution dominates over cosmological repulsion. This gives rise to a remarkable result in the Schwarzschild–de Sitter black hole surrounded by dark matter field in contrast to the Schwarzschild–de Sitter metric. Finally, we study epicyclic motion and its frequencies with their applications to twin peak quasi-periodic oscillations (QPOs) for various models. We find the corresponding values of the black hole parameters which could best fit and explain the observed twin peak QPO object GRS 1915+109 from microquasars.


2021 ◽  
pp. 2150112
Author(s):  
Tian-Chi Ma ◽  
He-Xu Zhang ◽  
Peng-Zhang He ◽  
Hao-Ran Zhang ◽  
Yuan Chen ◽  
...  

In this paper, we derived an exact solution of the spherically symmetric Hayward black hole surrounded by perfect fluid dark matter (PFDM). By applying the Newman–Janis algorithm, we generalized it to the corresponding rotating black hole. Then, we studied the shadows of rotating Hayward black hole in PFDM. The apparent shape of the shadow depends upon the black hole spin [Formula: see text], the magnetic charge [Formula: see text] and the PFDM intensity parameter [Formula: see text]. The shadow is a perfect circle in the non-rotating case [Formula: see text] and a deformed one in the rotating case [Formula: see text]. For a fixed value of [Formula: see text], the size of the shadow increases with the increasing [Formula: see text], but decreases with the increasing [Formula: see text]. We further investigated the black hole emission rate. We found that the emission rate decreases with the increasing [Formula: see text] (or [Formula: see text]) and the peak of the emission shifts to lower frequency. Finally, we discussed the observational prospects corresponding to the supermassive black hole Sgr A[Formula: see text] at the center of the Milky Way.


2020 ◽  
Vol 30 ◽  
pp. 100648 ◽  
Author(s):  
Sanjar Shaymatov ◽  
Jaroslav Vrba ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

Author(s):  
Muhammad Rizwan ◽  
Tooba Feroze

In this paper, we study the effects of the external magnetic field on the Lense–Thirring (LT) precession of a test gyroscope attached to an observer in magnetized black hole spacetime. For this, we consider a Kerr–Newman black hole embedded in the external magnetic field. The LT precession of a test gyroscope diverges near the ergosurface and remains finite everywhere outside the ergosurface. It is seen that by increasing the external magnetic field, the LT precession frequency in the region of large [Formula: see text] decreases as [Formula: see text] increases, while the precession frequency in the region of small [Formula: see text] increases as [Formula: see text] increases, whereas it increases with increasing the charge of the black hole. The LT precession of a test gyroscope attached to observers moving along the directions close to the polar axis is greater than that of the observer moving in the equatorial plane.


2011 ◽  
Vol 26 (06) ◽  
pp. 399-408 ◽  
Author(s):  
O. G. RAHIMOV

We investigate the motion of a magnetized particle orbiting around a black hole in braneworld immersed in asymptotically uniform magnetic field. The influence of brane parameter on effective potential of the radial motion of magnetized spinning particle around the braneworld black hole using Hamilton–Jacobi formalism is studied. It is found that circular orbits for photons and slowly moving particles may become stable near r = 3M. It was argued that the radii of the innermost stable circular orbits are sensitive on the change of brane parameter. Similar discussion without Weil parameter has been considered by de Felice et al. in Refs. 1 and 2.


2005 ◽  
Vol 20 (14) ◽  
pp. 1077-1085 ◽  
Author(s):  
MARICEL AGOP ◽  
EUGEN RADU ◽  
REINOUD SLAGTER

The dilatonic Ernst solution describing a Schwarzschild black hole immersed in a background magnetic field is generalized by including a Liouville-type potential in the action principle. We prove that the thermodynamic properties of this new black hole dilaton solution are unaffected by an external magnetic field passing through it.


Sign in / Sign up

Export Citation Format

Share Document