Correlation of MRSA Polymerase Chain Reaction (PCR) Wound Swab Testing and Wound Cultures in Skin and Soft Tissue Infections

Author(s):  
Tyler B. Clay ◽  
Kara W. Orwig ◽  
Raice A. Stevens ◽  
Emily P. Davis ◽  
Timothy M. Jennings ◽  
...  
2005 ◽  
Vol 129 (1) ◽  
pp. 107-110 ◽  
Author(s):  
Raoulin Soulard ◽  
Valère Claude ◽  
Philippe Camparo ◽  
Jean-Philippe Dufau ◽  
Patrick Saint-Blancard ◽  
...  

Abstract Ewing sarcoma/primitive neuroectodermal tumor is classically a tumor of the soft tissue or bone in children and young adults, but several cases have been described in patients of all ages. Within the last decade, the clinicopathologic spectrum of Ewing sarcoma/primitive neuroectodermal tumor has been markedly expanded by recognition that the tumor may also have a visceral origin. We describe a case of primitive neuroectodermal tumor arising in the stomach of a 66-year-old woman. The neoplasm was excised using a radical surgical procedure. Microscopically, the tumor was made up of solid nests and sheets of round cells. Immunohistochemically, the tumor cells showed immunoreactivity for CD99, S100, neuron-specific enolase, and vimentin. A multiplex real-time polymerase chain reaction assay detected an EWS-ERG fusion. To our knowledge, this is the first description of a primitive neuroectodermal tumor arising in the stomach.


2009 ◽  
Vol 58 (3) ◽  
pp. 473-477
Author(s):  
Kensaku Yamaga ◽  
Hideki Yamashita ◽  
Koji Endo ◽  
Mitsuhiko Osaki ◽  
Takeshi Minamizaki ◽  
...  

1999 ◽  
Vol 123 (12) ◽  
pp. 1246-1259
Author(s):  
Andrzej Slominski ◽  
Jacobo Wortsman ◽  
Andrew Carlson ◽  
Martin Mihm ◽  
Brian Nickoloff ◽  
...  

Abstract Objective.—To present recent concepts on the molecular pathogenesis of tumors of soft tissue and bone, and on the use of molecular genetic methods, including their significance as diagnostic markers and prognostic indicators. Data Sources and Study Selection.—Reports on tumors of bone and/or soft tissue published in the English language literature and observations made using specimens available at the Departments of Pathology at Albany Medical College and Loyola University Medical Center. Data Extraction and Synthesis.—Studies on bone and soft tissue tumors containing chromosomal or genetic evaluation were selected for further analysis. Specific chromosomal abnormalities, such as numerical aberrations or translocations with production of fusion genes, were classified according to the tumor of origin. Data were also collected on mutations in tumor suppressor genes, genes coding for growth factors or their receptors, and genes coding for tyrosine kinases. Also noted were mutations of uncertain significance, for which the pathogenic connection between tumor production and mutated gene function is still unclear. Conclusions.—In general, the mutations reported interfere with the action of peptide growth factors coordinating mesenchyme proliferation and differentiation, although membrane-bound receptors expressing the intracellular signaling modifier, tyrosine kinase activity, have also been involved. Functional types of genes most commonly affected include tumor suppressors, oncogenes, and nuclear transcription factors. Thus, the mutations involved in the pathogenesis of soft tissue and bone tumors have affected multiple genes. Moreover, aberrant fusion gene products may be formed in tumoral tissue and may then act as transcription regulators stimulating cellular proliferation. Cytogenetic studies help at the clinical level by demonstrating aneuploidy and increased ploidy, which may correlate with malignant behavior. Diagnostic tumor-specific chromosomal translocations may be detected with Southern hybridization analysis, polymerase chain reaction, reverse-transcription polymerase chain reaction, or with the fluorescence in situ hybridization technique. Notably, early metastatic disease may be detectable in blood specimens using polymerase chain reaction or reverse-transcription polymerase chain reaction techniques.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2397-2405 ◽  
Author(s):  
Emanuela Ricotti ◽  
Franca Fagioli ◽  
Emanuela Garelli ◽  
Claudia Linari ◽  
Nicoletta Crescenzio ◽  
...  

Abstract During development, mice with mutations of stem cell factor (SCF) or its receptor c-kit exhibit defects in melanogenesis, as well as hematopoiesis and gonadogenesis. Consequently, accumulating evidence suggests that the c-kit/SCF system plays a crucial role in all of these processes and in tumors which derive from them. Especially in neuroblastoma (infant tumors of neuroectoderm crest derivation such as melanocytes) it would appear that an autocrine loop exists between c-kit and SCF, and that the functional block of the c-kit receptors with monoclonal antibodies (MoAbs) results in a significant decrease in cellular proliferation. We studied the expression and role of c-kit and SCF in cell lines of soft tissue sarcoma of neuroectodermic origin, such as Ewing's sarcoma (ES) and peripheral neuro-ectodermal tumors (PNET). Using flow cytometry with MoAb CD117 PE, c-kit expression was highlighted in all six of the cell lines examined. This receptor was specifically and functionally activated by SCF, as shown by the binding experiments and the intracellular phosphotyrosine and immunoprecipitation studies that were performed. Using reverse transcriptase polymerase chain reaction analysis, five of the six cellular lines expressed the mRNA of SCF. In the medium measured by using an enzyme- linked immunosorbent assay, low concentrations of SCF were found: only the TC32 cellular line produced significantly higher levels (32 pg) than control. In serum-free culture the addition of SCF reduced the percentage of apoptotic cells from 25% to 90% in five out of the six cellular lines. This observation was confirmed by (1) the functional block of c-kit with MoAb: after 7 days of culture more than 30% of the cells were apoptotic (range 31.5% to 100%) in five out of six cell lines and there was also a decrease in the percentage of cells in phase S, and (2) c-kitantisense oligonucleotides: in the cellular lines treated with oligonucleotides (in relation to the untreated lines) there was a notable reduction (P < .001) both in the absolute number of cells and the 3H-thymidine uptake. These results indicate that ES and PNET express c-kit and its ligand SCF and that SCF is capable of protecting the tumor cells against apoptosis. Furthermore, the reverse transcriptase–polymerase chain reaction performed on the biopsies revealed the presence of mRNA both of SCF and c-kit in practically all of the samples studied. Our in vitro data lead us to assume that SCF may also inhibit tumor cell apoptosis in vivo.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2397-2405 ◽  
Author(s):  
Emanuela Ricotti ◽  
Franca Fagioli ◽  
Emanuela Garelli ◽  
Claudia Linari ◽  
Nicoletta Crescenzio ◽  
...  

During development, mice with mutations of stem cell factor (SCF) or its receptor c-kit exhibit defects in melanogenesis, as well as hematopoiesis and gonadogenesis. Consequently, accumulating evidence suggests that the c-kit/SCF system plays a crucial role in all of these processes and in tumors which derive from them. Especially in neuroblastoma (infant tumors of neuroectoderm crest derivation such as melanocytes) it would appear that an autocrine loop exists between c-kit and SCF, and that the functional block of the c-kit receptors with monoclonal antibodies (MoAbs) results in a significant decrease in cellular proliferation. We studied the expression and role of c-kit and SCF in cell lines of soft tissue sarcoma of neuroectodermic origin, such as Ewing's sarcoma (ES) and peripheral neuro-ectodermal tumors (PNET). Using flow cytometry with MoAb CD117 PE, c-kit expression was highlighted in all six of the cell lines examined. This receptor was specifically and functionally activated by SCF, as shown by the binding experiments and the intracellular phosphotyrosine and immunoprecipitation studies that were performed. Using reverse transcriptase polymerase chain reaction analysis, five of the six cellular lines expressed the mRNA of SCF. In the medium measured by using an enzyme- linked immunosorbent assay, low concentrations of SCF were found: only the TC32 cellular line produced significantly higher levels (32 pg) than control. In serum-free culture the addition of SCF reduced the percentage of apoptotic cells from 25% to 90% in five out of the six cellular lines. This observation was confirmed by (1) the functional block of c-kit with MoAb: after 7 days of culture more than 30% of the cells were apoptotic (range 31.5% to 100%) in five out of six cell lines and there was also a decrease in the percentage of cells in phase S, and (2) c-kitantisense oligonucleotides: in the cellular lines treated with oligonucleotides (in relation to the untreated lines) there was a notable reduction (P < .001) both in the absolute number of cells and the 3H-thymidine uptake. These results indicate that ES and PNET express c-kit and its ligand SCF and that SCF is capable of protecting the tumor cells against apoptosis. Furthermore, the reverse transcriptase–polymerase chain reaction performed on the biopsies revealed the presence of mRNA both of SCF and c-kit in practically all of the samples studied. Our in vitro data lead us to assume that SCF may also inhibit tumor cell apoptosis in vivo.


Sign in / Sign up

Export Citation Format

Share Document