Mechanical properties of Al-Mg/MWCNT nanocomposite powder produced under different parameters of ball milling process

2021 ◽  
pp. 108755
Author(s):  
Hossein Ahmadian ◽  
Tianfeng Zhou ◽  
Seyed Rahim Kiahosseini
2021 ◽  
Vol 856 ◽  
pp. 157869
Author(s):  
Arnaud Bolsonella ◽  
Foad Naimi ◽  
Olivier Heintz ◽  
Thomas Tricone ◽  
Hervé Couque ◽  
...  

2021 ◽  
Vol 11 (20) ◽  
pp. 9420
Author(s):  
Dimitra Kourtidou ◽  
Konstantinos Tsongas ◽  
Maria-Eirini Grigora ◽  
Dimitrios Tzetzis ◽  
Dimitrios N. Bikiaris ◽  
...  

Short-chain branched-Polyethylene (SCB-PE) is commonly utilized in hot and cold piping systems due to its high-temperature resistance. SCB-PE nanocomposites using graphene nanoplatelets (GNPs) as a reinforcing filler were synthesized in this work. The effect of the filler’s content and the ball-milling process on nanocomposites’ structure, tensile and shear properties was studied. Two series of nanocomposites have been prepared, one with and one without the ball-milling as a premixing step prior to the melt-mixing process. The ball-milling process induced a lower crystallinity degree of the SCB-PE nanocomposites than their solely melt-mixed counterpart. The tensile properties of the ball-milled samples presented a more profound enhancement with increasing filler content. The Ji and modified Halpin-Tsai micromechanical models were best fit to describe the experimental elastic modulus of the solely melt-mixed and the ball-milled nanocomposites, respectively. Fractography studies suggested that the detachment of the filler particles from the polymer matrix is avoided for lower GNPs contents of the ball-milled samples. Shear tests revealed that the shear strength increased and ductility decreased with increasing filler content in any case. The ball-milling process resulted in SCB-PE nanocomposites with superior mechanical properties compared to their solely melt-mixed counterparts.


2021 ◽  
Author(s):  
Hossein Ahmadian

Abstract The effects of multi-walled carbon nano-tubes (MWCNTs) and the ball milling parameters on the mechanical properties of the Al-Mg alloy powders were investigated. Three different composite powders were synthesized through ball-milling process at different time and milling rates. The microstructural and phase analyses were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, respectively. The results indicated that increasing the ball-milling time and rate would lead to the formation of finer particles, which consequently intensifies the plastic deformation and then, results in lower crystallite size. The morphological investigations indicated that while the MWCNTs agglomerates in lower milling rates, increased milling rate not only improve the distribution of the MWCNTs, but also decreases the length of the nano-tubes and promotes their diffusion into Al-Mg matrix. The formation of Al-Mg intermetallic phases through the ball-milling process of the composite powders was also confirmed via microstructural investigations.


2021 ◽  
Vol 217 (1) ◽  
pp. 255-264
Author(s):  
Xiaomeng Zhu ◽  
Xiaolan Cai ◽  
Shuang Zhang ◽  
Lei Wang ◽  
Xudong Cui

Author(s):  
Fenglin Wang ◽  
Yunping Li ◽  
Xiandong Xu ◽  
Yuichiro Koizumi ◽  
Kenta Yamanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document