scholarly journals Mechanical properties of the Al-Mg/MWCNTs composite powders: The effects of ball milling process parameters

Author(s):  
Hossein Ahmadian

Abstract The effects of multi-walled carbon nano-tubes (MWCNTs) and the ball milling parameters on the mechanical properties of the Al-Mg alloy powders were investigated. Three different composite powders were synthesized through ball-milling process at different time and milling rates. The microstructural and phase analyses were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, respectively. The results indicated that increasing the ball-milling time and rate would lead to the formation of finer particles, which consequently intensifies the plastic deformation and then, results in lower crystallite size. The morphological investigations indicated that while the MWCNTs agglomerates in lower milling rates, increased milling rate not only improve the distribution of the MWCNTs, but also decreases the length of the nano-tubes and promotes their diffusion into Al-Mg matrix. The formation of Al-Mg intermetallic phases through the ball-milling process of the composite powders was also confirmed via microstructural investigations.

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1926 ◽  
Author(s):  
Lei Zhang ◽  
Zhifu Huang ◽  
Yangzhen Liu ◽  
Yupeng Shen ◽  
Kemin Li ◽  
...  

Mo2NiB2-Ni cermets have been extensively investigated due to their outstanding properties. However, studies have not systematically examined the effect of the powder milling process on the cermets. In this study, Mo, Ni, and B raw powders were subjected to mechanical ball milling from 1 h to 15 h. XRD patterns of the milled powders confirmed that a new phase was not observed at milling times of 1 h to 15 h. With the increase in the mechanical ball milling time from 1 h to 11 h, raw powders were crushed to small fragments, in addition to a more uniform distribution, and with the increase in the mechanical ball milling time to greater than 11 h, milled powders changed slightly. Mo2NiB2-Ni cermets were fabricated by reaction boronizing sintering using the milled powders at different ball milling times. The milling time significantly affected the microstructure and mechanical properties of Mo2NiB2-Ni cermets. Moreover, the Mo2NiB2 cermet powder subjected to a milling time of 11 h exhibited the finest crystal size and the maximum volume fraction of the Mo2NiB2 hard phase. Furthermore, the cermets with a milling time of 11 h exhibited a maximum hardness and bending strength of 87.6 HRA and 1367.3 MPa, respectively.


2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2020 ◽  
Vol 65 ◽  
pp. 123-134
Author(s):  
Samira Lalaoua ◽  
Bouguerra Bouzabata ◽  
Safia Alleg ◽  
Abedelmalik Djekoun ◽  
David Shmool

Fe-10wt% La (OH)3 composite powders have been fabricated by ball milling, under argon atmosphere for milling periods of 0, 5 and 10 h, respectively. Changes in structural, morphological, thermal and magnetic properties of the powders during mechanical alloying and during subsequent annealing have been examined by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). XRD results: showed the formation of new phases (Fe and LaFeO3 perovskite) created through the ball milling. The results showed that the crystalline size of ball milled powders decreased with increasing the milling time. In fact, after 10 h of ball milling, La (OH)3 changes from nanostructure in amorphous structure. The magnetic measurements display a distinct saturation magnetization and coercivity.


2007 ◽  
Vol 336-338 ◽  
pp. 965-967
Author(s):  
Qi Zhou ◽  
Qin Ma ◽  
Shu Jun Zang ◽  
Jian Jun Liu ◽  
Cui Xia Wang

The tribochemical effects of MoSi2 powder in the ball milling process have been studied by X-ray diffraction (XRD) and QM-4H milling machine. It has been found that the intensity of diffraction peak of MoSi2 powder is continuously decreased and the width increased with the increase of milling time. Specifically, the crystallite size decreased largely in the early stage of milling. Contrary to the above, the microstrain and the effective temperature factor increased considerably. After ninety hours of milling, the crystallite size had little changes. The relations among the tribochemical effect factors are as follows: the microstrain and the effective temperature factor increase with the decrease of the crystallite size. The microstrain increases with the increase of the effective temperature factor.


2020 ◽  
Vol 996 ◽  
pp. 41-47
Author(s):  
Xiao Lei He ◽  
Tian Bing He ◽  
Peng Jun Tang ◽  
Xing Yuan Wang

The CNTs/Al2009 composite powders were prepared by cryogenic milling. The CNTs were uniformly dispersed on the surface of Al2009 powders. And then the CNTs/2009Al composites were fabricated by hot extrusion/hot isostatic pressing method. The effects of CNTs content and cryogenic milling process on the dispersion of CNTs in Al2009 matrix, the microstructure of powders and the properties of composites were studied by Scanning electron microscopy, Raman spectroscopy and tensile strength testing at room temperature. The results showed that the dispersion of CNTs was improved with the extension of ball milling time (1h~4h), but the damage degree of CNTs was intensified. In comparison, CNTs had the highest damage rate at the beginning of ball milling. As the milling time increased, the mechanical properties began to increase slightly and then decreased. When the ball milling time was 2h, the mechanical properties reached the highest. Cryogenic milling could achieve good dispersion in the Al2009 matrix for mixed powders with low CNTs content. When the CNTs content increased to 1.0%, a small amount of agglomeration appeared, but for composites, the strengthening effect of CNTs was more dominant. When CNTs were further added, the dispersion was remarkably lowered and the performance was deteriorated. CNTs (1.0wt.%)/Al2009 composites had excellent mechanical properties. The tensile strength reached 560MPa, which was 25% higher than Al2009.


2018 ◽  
Vol 777 ◽  
pp. 80-84
Author(s):  
Jie Guang Song ◽  
Yue Liu ◽  
Long He ◽  
Jin Shi Li ◽  
Wang Chen ◽  
...  

The Al2O3/Al cermet composite powders were prepared via the ball milling method,which provide raw materials for preparing high performance cermet materials. The results show that the number of Al2O3 particles on the surface of Al particles increases first and then decreases with increasing the ball milling time and milling rotating speed. The number of Al2O3 particles on the surface of Al particles increases with increasing ball to powder mass ratio. The analysis of the ratio of performance to price shows that the better parameters for preparing the pinned Al2O3/Al cermet composite powders are as follows, the ball milling time 24h,the ball milling rotating speed 100 r/min and the ratio of ball to powder 1:2.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


2008 ◽  
Vol 591-593 ◽  
pp. 147-153
Author(s):  
Gilbert Silva ◽  
Erika Coaglia Trindade Ramos ◽  
N.S. da Silva ◽  
Alfeu Saraiva Ramos

A large amount of the Ti6Si2B compound can be formed by mechanical alloying and subsequent heat treatment from the elemental Ti-22.2at%Si-11.1at%B powder mixture, but the yield powder after ball milling is reduced due to an excessive agglomeration of ductile particles on the balls and vial surfaces. This work reports on the structural evaluation of Ti-22.2at%Si-11.1at%B powders milled with PCA addition, varying its amount between 1 and 2 wt-%. The milling process was carried out in a planetary ball mill under argon atmosphere, and the milled powders were then heated at 1200oC for 1h under Ar atmosphere in order to obtain equilibrium structures. Samples were characterized by X-ray diffraction, scanning electron microscopy, and thermal analysis. Results revealed that the PCA addition reduced the excessive agglomeration during the ball milling of Ti-22.2at-%Si-11.1at-%B powders. After heating at 1200oC for 1h, the Ti5Si3, Ti3O and/or Ti2C phases were preferentially formed in Ti-22.2at%Si-11.1at%B powders milled with PCA addition, and the Ti6Si2B formation was inhibited.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 357 ◽  
Author(s):  
Huang ◽  
Li ◽  
Qiu ◽  
Chen ◽  
Cheng ◽  
...  

In the present study, a series of CeO2/TiO2 catalysts were fabricated by dry ball milling method in the absence and presence of organic assistants, and their catalytic performances for the selective catalytic reduction (SCR) of NO by NH3 were investigated. It was found that the addition of organic assistants in the ball milling process and the calcining ambience exerted a significant influence on the catalytic performances of CeO2/TiO2 catalysts. The nitrogen sorption isotherm measurement (BET), powder X-ray diffraction (XRD), Raman spectra, high-resolution transmission electron microscopy (HR-TEM), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), sulfur dioxide temperature-programmed desorption (SO2-TPD), thermogravimetric analysis (TG), Fourier transform infrared (FT-IR) and X-ray photoelectron spectra (XPS) characterizations showed that the introduction of citric acid in the ball milling process could significantly change the decomposition process of the precursor mixture, which can lead to improved dispersion and reducibility of cerium species, surface acidity as well as the surface microstructure, all which were responsible for the high low temperature activity of CeTi-C-N in an NH3-SCR reaction. In contrast, the addition of sucrose in the milling process showed an inhibitory effect on the catalytic performance of CeO2/TiO2 catalyst in an NH3-SCR reaction, possibly due to the decrease of the crystallinity of the TiO2 support and the carbon residue covering the active sites.


Sign in / Sign up

Export Citation Format

Share Document