scholarly journals Data on atomic structures of precipitates in an Al-Mg-Cu alloy studied by high resolution transmission electron microscopy and first-principles calculations

Data in Brief ◽  
2021 ◽  
Vol 34 ◽  
pp. 106748
Author(s):  
Xuanliang Chen ◽  
Calin D. Marioara ◽  
Sigmund J. Andersen ◽  
Jesper Friis ◽  
Adrian Lervik ◽  
...  
2005 ◽  
Vol 865 ◽  
Author(s):  
Yanfa Yan ◽  
M.M. Al-Jassim ◽  
K.M. Jones

AbstractUsing the combination of high-resolution transmission electron microscopy, first-principles density-functional total-energy calculations, and image simulations, we studied the atomic structure and passivation effects of double-positioning (DP) twin boundaries in CdTe. The DP twin boundaries are found to contain more Te dangling bonds than Cd dangling bonds, resulting in energy states in the bandgap that are detrimental to the electronic properties of CdTe. We found that I, Br, Cl, S, and O atoms present passivation effects on the DP twin boundaries to differing degrees, whereas H does not passivate the boundaries. Of all these impurities, I and Cl atoms present the best passivation effects on the DP twin boundaries. The superior passivation effects are realized by either terminating the Cd atoms with dangling bonds, or substituting the Te atoms with dangling bonds in the DP twin boundaries in CdTe by Cl and I atoms.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. C. Nicol ◽  
M. L. Jenkins ◽  
N. Wanderka ◽  
C. Abromeit

AbstractThe stability of Cu precipitates in an Fe-1.3wt%Cu alloy under 300 keV Fe+ion irradiation has been investigated using transmission electron microscopy and high-resolution electron microscopy. The irradiations were carried out between room temperature and 550°C at displacement rates of 103 to 10−2 dpa(s)−1 to fluences of up to 30 dpa. Copper precipitates were found to keep their shape but decrease in size under all irradiation conditions. The results are discussed within the framework of a competitive process between irradiation induced ballistic destruction of precipitates by cascades and irradiation-enhanced precipitation.


Author(s):  
Wandong Xing ◽  
Haozhi Sha ◽  
Fanyan Meng ◽  
Rong Yu

We have revealed the atomic structures and stability of the (11-20) surface of single crystal Cr2O3 combining aberration corrected transmission electron microscopy and first-principles calculations. It is found that the...


2012 ◽  
Vol 46 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Wentao Hu ◽  
Shaocun Liu ◽  
Bin Wen ◽  
Jianyong Xiang ◽  
Fusheng Wen ◽  
...  

Twinning structures in ordered nonstoichiometric ZrC0.6have been investigated experimentally and theoretically.Viatransmission electron microscopy and selected area electron diffraction measurements, {111}-specific twins have been observed. Interestingly, two special types of twinning interfaces,i.e.(111)Cand (111)Zrinterfaces, are recognized to be formed as a result of the presence of ordered carbon vacancies. In contrast to the high stacking fault energy for twinning formation in stoichiometric ZrC, first-principles calculations indicate that the presence of ordered carbon vacancies leads to a great reduction in the twinning interfacial energy, thus favouring the stabilization of twinning structures in the ordered ZrC0.6.


Sign in / Sign up

Export Citation Format

Share Document