scholarly journals Data set from large-scale citizen science provides high-resolution nitrogen dioxide values for enhancing community knowledge and collective action to related health issues

Data in Brief ◽  
2021 ◽  
pp. 107269
Author(s):  
Josep Perelló ◽  
Anna Cigarini ◽  
Julián Vicens ◽  
Isabelle Bonhoure ◽  
David Rojas-Rueda ◽  
...  
2020 ◽  
Author(s):  
Josep Perelló ◽  
Anna Cigarini ◽  
Julian Vicens ◽  
Isabelle Bonhoure ◽  
David Rojas-Rueda ◽  
...  

We present outcomes from a large-scale air quality citizen science campaign (xAire, 725 measurements) to demonstrate its positive contribution in the interplay between advances in exposure assessment and developments in policy or collective action. A broad partnership with 1,650 people from communities around 18 primary schools across Barcelona provided the capacity to obtain unprecedented high-resolution NO2 levels and an updated asthma Health Impact Assessment. It is shown that NO2 levels vary considerably with at some cases very high levels. More than a 1,000 new cases of childhood asthma could be prevented each year by lowering NO2 levels. Representativity of site selection and the minimal number of samplers for land use regression modelling are considered. Enhancement of community knowledge and attitudes towards collective response were observed and identified as key drivers for successful large-scale monitoring campaigns. The results encourage strengthening collaboration with local communities when exploring environmental health issues.


MethodsX ◽  
2021 ◽  
pp. 101475
Author(s):  
Josep Perelló ◽  
Jaume Targa ◽  
Carolyn Daher ◽  
Gloria Carrasco ◽  
María Alonso ◽  
...  

2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

<p>We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.</p><p> </p><p>footnote: EMO = European Meteorological Observations</p>


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. J39-J60
Author(s):  
João Willy Corrêa Rosa ◽  
José Wilson Corrêa Rosa ◽  
Götz Bokelmann

A new method is proposed for the study of crustal azimuthal anisotropy, and the lateral variation of other crustal aerogeophysical parameters, using a quantitative approach. The processing of a large, newly acquired, high-resolution set of aerogeophysical data is considered using the existing Radon transform and the geostatistical analysis approaches. The data set includes an area of the Guyana shield, in northern Brazil, which was not included in previous surveys. The area is covered by dense rain forest vegetation and thick soil layers. Parameterization was performed considering the possible anisotropic character of the geophysical 2D data. Application of the newly proposed geostatistical data processing yielded high-resolution images of the lateral variation of quantitative geophysical parameters, which indicate good correlation with previously determined seismic anisotropy in the area. Average anisotropy as measured by the Radon transform and variogram analysis is scale dependent. At scales greater than [Formula: see text], the results seem to match those of the previous seismic studies. Images of the derived quantitative parameters from magnetic and radiometric data in the shield area indicate sharp changes that follow the known geologic changes observable in the survey area. Observed large-scale anisotropy in the area seems to be autocorrelated with two different geochronological provinces of the Amazonian craton. Application of the new technique to two other lower resolution aeromagnetic surveys located on the Amazon basin has produced two different results, including one successful data treatment of the aeromagnetic survey. The results obtained for this area indicate that the sedimentary cover seems to play almost no role in the observed magnetic anomaly anisotropy in the middle Amazon basin area. Most of the observed magnetic anomalies appear to be controlled by the continuing geologic features of the cratonic basement.


2018 ◽  
Vol 611 ◽  
pp. A5 ◽  
Author(s):  
R. Siebenmorgen ◽  
N. V. Voshchinnikov ◽  
S. Bagnulo ◽  
N. L. J. Cox ◽  
J. Cami ◽  
...  

It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.


Author(s):  
Lei Zhu ◽  
Jacob R. Holden ◽  
Jeffrey D. Gonder

With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similarity score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.


2020 ◽  
pp. 110389
Author(s):  
Scott Weichenthal ◽  
Evi Dons ◽  
Kris Y. Hong ◽  
Pedro O. Pinheiro ◽  
Filip J.R. Meysman

Author(s):  
Mimi Arandjelovic ◽  
Colleen R Stephens ◽  
Maureen S McCarthy ◽  
Paula Dieguez ◽  
Ammie K Kalan ◽  
...  

The Pan African Programme: The cultured chimpanzee (PanAf) is a large-scale research project across the chimpanzee (Pan troglodytes) range which aims to better understand and model the socioecological and demographic drivers of chimpanzee diversity. As part of the PanAf, over 350,000 1-minute camera trap videos have been recorded. To annotate this large data set and ascertain individual chimpanzee identifications from 39 different temporary and collaborative chimpanzee research sites, we developed the web-based citizen science platform Chimp&See (www.chimpandsee.org) in collaboration with the Zooniverse. Chimp&See allows members of the general public to view the PanAf videos online and annotate which species are present and the behaviours they exhibit in each video. These citizen scientists also watch and discuss videos to determine unique chimpanzee individuals and match them from different video clips. Each video is viewed by up to 15 unique users, allowing us to obtain a confidence score based on the number of consensus matches for each identification. In this poster, we compare the accuracy and efficiency achieved by the general public on this platform to automated facial detection software and expert scientific annotators. We also evaluate whether citizen science and video camera trapping is a way forward for assessing chimpanzee age/sex structure, density and community size in a cost and time effective manner. Finally, we discuss the balance between maintaining user engagement and obtaining detailed and accurate scientific data from citizen scientists.


Sign in / Sign up

Export Citation Format

Share Document