Lateral variation of crustal properties from aerogeophysical data in northern Brazil

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. J39-J60
Author(s):  
João Willy Corrêa Rosa ◽  
José Wilson Corrêa Rosa ◽  
Götz Bokelmann

A new method is proposed for the study of crustal azimuthal anisotropy, and the lateral variation of other crustal aerogeophysical parameters, using a quantitative approach. The processing of a large, newly acquired, high-resolution set of aerogeophysical data is considered using the existing Radon transform and the geostatistical analysis approaches. The data set includes an area of the Guyana shield, in northern Brazil, which was not included in previous surveys. The area is covered by dense rain forest vegetation and thick soil layers. Parameterization was performed considering the possible anisotropic character of the geophysical 2D data. Application of the newly proposed geostatistical data processing yielded high-resolution images of the lateral variation of quantitative geophysical parameters, which indicate good correlation with previously determined seismic anisotropy in the area. Average anisotropy as measured by the Radon transform and variogram analysis is scale dependent. At scales greater than [Formula: see text], the results seem to match those of the previous seismic studies. Images of the derived quantitative parameters from magnetic and radiometric data in the shield area indicate sharp changes that follow the known geologic changes observable in the survey area. Observed large-scale anisotropy in the area seems to be autocorrelated with two different geochronological provinces of the Amazonian craton. Application of the new technique to two other lower resolution aeromagnetic surveys located on the Amazon basin has produced two different results, including one successful data treatment of the aeromagnetic survey. The results obtained for this area indicate that the sedimentary cover seems to play almost no role in the observed magnetic anomaly anisotropy in the middle Amazon basin area. Most of the observed magnetic anomalies appear to be controlled by the continuing geologic features of the cratonic basement.

2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

<p>We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.</p><p> </p><p>footnote: EMO = European Meteorological Observations</p>


2018 ◽  
Vol 611 ◽  
pp. A5 ◽  
Author(s):  
R. Siebenmorgen ◽  
N. V. Voshchinnikov ◽  
S. Bagnulo ◽  
N. L. J. Cox ◽  
J. Cami ◽  
...  

It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.


Author(s):  
Lei Zhu ◽  
Jacob R. Holden ◽  
Jeffrey D. Gonder

With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similarity score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.


2020 ◽  
Author(s):  
Juan Pablo Sierra ◽  
Clementine Junquas ◽  
Jhan Carlo Epinoza ◽  
Thierry Lebel ◽  
Hans Segura

<p><span>The western Amazon and eastern flank of the Andes form what is known as the Amazon-Andes transition region. This region is characterized by the presence of the rainiest area in the Amazon basin with an average precipitation ranging from 6000 to 7000 mm per year. This rainy zone is the result of interactions between large-scale circulation and local features. However, the physical mechanisms controlling this rainfall patterns in the transition region are poorly understood. On the other hand, high precipitation values in the area, along with erosion, sediment transport and the geological mountain uplift help to explain this region as one of the most species-rich terrestrial ecosystems. Nevertheless, accelerated deforestation rates reported both in tropical Andes and central-southern Amazon threat the biodiversity hotspots and can induce alterations in land surface energy and water balances. In this context, the use of regional climate models can shed light on the possible consequences of deforestation on rainfall in the transition region. </span></p><p><span>The early results presented here are the first step in a work that seeks to gain a better understanding in the mechanisms involved in precipitation generation over the Amazon-Andes transition region, as well as the assessment of deforestation impacts on spatial and temporal rainfall variability during austral summer. The Weather Research and Forecasting (WRF) regional climate model is used with three nested domains. High resolution simulations (1km horizontal grid size) are performed over the key regions of Cuzco and Bolivian slopes. As a perspective,<span>  </span>deforestation scenarios following the land use change trajectory observed during the last decade will be used in future works. The results of this work can help to dimension the consequences of deforestation on key ecosystems such as Andean hotspots.</span></p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4103
Author(s):  
Zhe Wang ◽  
Haiying Wang ◽  
Fen Qin ◽  
Zhigang Han ◽  
Changhong Miao

Accurately identifying and delineating urban boundaries are the premise for and foundation of the control of disorderly urban sprawl, which is helpful for us to accurately grasp the scale and form of cities, optimize the internal spatial structure and pattern of cities, and guide the expansion of urban spaces in the future. At present, the concept and delineation of urban boundaries do not follow a unified method or standard. However, many scholars have made use of multi-source remote sensing images of various scales and social auxiliary data such as point of interest (POI) data to achieve large-scale, high-resolution, and high-precision land cover mapping and impermeable water surface mapping. The accuracy of small- and medium-scale urban boundary mapping has not been improved to an obvious extent. This study uses multi-temporal Sentinel-2 high-resolution images and POI data that can reflect detailed features of human activities to extract multi-dimensional features and use random forests and mathematical morphology to map the urban boundaries of the city of Zhengzhou. The research results show that: (1) the urban construction land extraction model established with multi-dimensional features has a great improvement in accuracy; (2) when the training sample accounts for 65% of the sample data set, the urban construction land extraction model has the highest accuracy, reaching 96.25%, and the Kappa coefficient is 0.93; (3) the optimized boundary of structural elements with a size of 13 × 13 is selected, which is in good agreement in terms of scope and location with the boundary of FROM-GLC10 (Zhengzhou) and visual interpretations. The results from the urban boundary delineation in this paper can be used as an important database for detailed basic land use mapping within cities. Moreover, the method in this paper has some reference value for other cities in terms of delineating urban boundaries.


2021 ◽  
Vol 225 (3) ◽  
pp. 2097-2119
Author(s):  
Brandon P VanderBeek ◽  
Manuele Faccenda

SUMMARY Despite the well-established anisotropic nature of Earth’s upper mantle, the influence of elastic anisotropy on teleseismic P-wave imaging remains largely ignored. Unmodelled anisotropic heterogeneity can lead to substantial isotropic velocity artefacts that may be misinterpreted as compositional heterogeneities. Recent studies have demonstrated the possibility of inverting P-wave delay times for the strength and orientation of seismic anisotropy. However, the ability of P-wave delay times to constrain complex anisotropic patterns, such as those expected in subduction settings, remains unclear as synthetic testing has been restricted to the recovery of simplified block-like structures using ideal self-consistent data (i.e. data produced using the assumptions built into the tomography algorithm). Here, we present a modified parametrization for imaging arbitrarily oriented hexagonal anisotropy and test the method by reconstructing geodynamic simulations of subduction. Our inversion approach allows for isotropic starting models and includes approximate analytic finite-frequency sensitivity kernels for the simplified anisotropic parameters. Synthetic seismic data are created by propagating teleseismic waves through an elastically anisotropic subduction zone model created via petrologic-thermomechanical modelling. Delay times across a synthetic seismic array are measured using conventional cross-correlation techniques. We find that our imaging algorithm is capable of resolving large-scale features in subduction zone anisotropic structure (e.g. toroidal flow pattern and dipping fabrics associated with the descending slab). Allowing for arbitrarily oriented anisotropy also results in a more accurate reconstruction of isotropic slab structure. In comparison, models created assuming isotropy or only azimuthal anisotropy contain significant isotropic and anisotropic imaging artefacts that may lead to spurious interpretations. We conclude that teleseismic P-wave traveltimes are a useful observable for probing the 3-D distribution of upper mantle anisotropy and that anisotropic inversions should be explored to better understand the nature of isotropic velocity anomalies particularly in subduction settings.


Author(s):  
Zhiyang Li ◽  
Jennifer Aschoff

Dynamic topography refers to the vertical deflection (i.e., uplift and subsidence) of the Earth’s surface generated in response to mantle flow. Although dynamic subsidence has been increasingly invoked to explain the subsidence and migration of depocenters in the Late Cretaceous North American Cordilleran foreland basin (CFB), it remains a challenging task to discriminate the effects of dynamic mantle processes from other subsidence mechanisms, and the spatial and temporal scales of dynamic topography is not well known. To unravel the relationship between sedimentary systems, accommodation, and subsidence mechanisms of the CFB through time and space, a high-resolution chronostratigraphic framework was developed for the Upper Cretaceous strata based on a dense data set integrating >600 well logs from multiple basins/regions in Wyoming, Utah, Colorado, and New Mexico, USA. The newly developed stratigraphic framework divides the Upper Cretaceous strata into four chronostratigraphic packages separated by chronostratigraphic surfaces that can be correlated regionally and constrained by ammonite biozones. Regional isopach patterns and shoreline trends constructed for successive time intervals suggest that dynamic subsidence influenced accommodation creation in the CFB starting from ca. 85 Ma, and this wave of subsidence increasingly affected the CFB by ca. 80 Ma as subsidence migrated from the southwest to northeast. During 100−75 Ma, the depocenter migrated from central Utah (dominantly flexural subsidence) to north-central Colorado (dominantly dynamic subsidence). Subsidence within the CFB during 75−66 Ma was controlled by the combined effects of flexural subsidence induced by local Laramide uplifts and dynamic subsidence. Results from this study provide new constraints on the spatio-temporal footprint and migration of large-scale (>400 km × 400 km) dynamic topography at an average rate ranging from ∼120 to 60 km/m.y. in the CFB through the Late Cretaceous. The wavelength and location of dynamic topography (subsidence and uplift) generated in response to the subduction of the conjugate Shatsky Rise highly varied through both space and time, probably depending on the evolution of the oceanic plateau (e.g., changes in its location, subduction angle and depth, and buoyancy). Careful, high-resolution reconstruction of regional stratigraphic frameworks using three-dimensional data sets is critical to constrain the influence of dynamic topography. The highly transitory effects of dynamic topography need to be incorporated into future foreland basin models to better reconstruct and predict the formation of foreland basins that may have formed under the combined influence of upper crustal flexural loading and dynamic subcrustal loading associated with large-scale mantle flows.


Author(s):  
K. E. Mothi Kumar ◽  
S. Singh ◽  
P. Attri ◽  
R. Kumar ◽  
A. Kumar ◽  
...  

Identification and demarcation of Forest lands on the ground remains a major challenge in Forest administration and management. Cadastral forest mapping deals with forestlands boundary delineation and their associated characterization (forest/non forest). The present study is an application of high resolution World View-II data for digitization of Protected Forest boundary at cadastral level with integration of Records of Right (ROR) data. Cadastral vector data was generated by digitization of spatial data using scanned mussavies in <i>ArcGIS</i> environment. Ortho-images were created from World View-II digital stereo data with Universal Transverse Mercator coordinate system with WGS 84 datum. <br><br> Cadastral vector data of Bir Hisar (Hisar district, Haryana) and adjacent villages was spatially adjusted over ortho-image using <i>ArcGIS</i> software. Edge matching of village boundaries was done with respect to khasra boundaries of individual village. The notified forest grids were identified on ortho-image and grid vector data was extracted from georeferenced cadastral data. Cadastral forest boundary vectors were digitized from ortho-images. Accuracy of cadastral data was checked by comparison of randomly selected geo-coordinates points, tie lines and boundary measurements of randomly selected parcels generated from image data set with that of actual field measurements. <br><br> Area comparison was done between cadastral map area, the image map area and RoR area. The area covered under Protected Forest was compared with ROR data and within an accuracy of less than 1 % from ROR area was accepted. The methodology presented in this paper is useful to update the cadastral forest maps. The produced GIS databases and large-scale Forest Maps may serve as a data foundation towards a land register of forests. The study introduces the use of very high resolution satellite data to develop a method for cadastral surveying through on - screen digitization in a less time as compared to the old fashioned cadastral parcel boundaries surveying method.


Sign in / Sign up

Export Citation Format

Share Document