First intention vertebroplasty in fractures within an ankylosed thoracolumbar spinal segment

Author(s):  
Alexandre J. Prestat ◽  
Pedro-Augusto Gondim Teixeira ◽  
Aymeric Rauch ◽  
Damien Loeuille ◽  
Pierre-Henri Pretat ◽  
...  
Keyword(s):  
TRAUMA ◽  
2017 ◽  
Vol 18 (4) ◽  
pp. 82-87
Author(s):  
K.A. Popsuyshapka ◽  
M.Yu. Karpinskiy ◽  
S.A. Teslenko ◽  
E.D. Karpinska ◽  
A.I. Popov

1999 ◽  
Vol 81 (5) ◽  
pp. 2037-2045 ◽  
Author(s):  
James T. Buchanan

Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. To test the necessity of spinal commissural interneurons in the generation of the swim rhythm in lamprey, longitudinal midline cuts of the isolated spinal cord preparation were made. Fictive swimming was then induced by bath perfusion with an excitatory amino acid while recording ventral root activity. When the spinal cord preparation was cut completely along the midline into two lateral hemicords, the rhythmic activity of fictive swimming was lost, usually replaced with continuous ventral root spiking. The loss of the fictive swim rhythm was not due to nonspecific damage produced by the cut because rhythmic activity was present in split regions of spinal cord when the split region was still attached to intact cord. The quality of this persistent rhythmic activity, quantified with an autocorrelation method, declined with the distance of the split spinal segment from the remaining intact spinal cord. The deterioration of the rhythm was characterized by a lengthening of burst durations and a shortening of the interburst silent phases. This pattern of deterioration suggests a loss of rhythmic inhibitory inputs. The same pattern of rhythm deterioration was seen in preparations with the rostral end of the spinal cord cut compared with those with the caudal end cut. The results of this study indicate that commissural interneurons are necessary for the generation of the swimming rhythm in the lamprey spinal cord, and the characteristic loss of the silent interburst phases of the swimming rhythm is consistent with a loss of inhibitory commissural interneurons. The results also suggest that both descending and ascending commissural interneurons are important in the generation of the swimming rhythm. The swim rhythm that persists in the split cord while still attached to an intact portion of spinal cord is thus imposed by interneurons projecting from the intact region of cord into the split region. These projections are functionally short because rhythmic activity was lost within approximately five spinal segments from the intact region of spinal cord.


2018 ◽  
Vol XXIII (133) ◽  
pp. 64-84
Author(s):  
Bruno Martins Araújo ◽  
Marcela Maria de Almeida Amorim ◽  
Sérgio Diego Passos Costa ◽  
Nadyne L. F. Cardoso Rocha ◽  
Thays G. Rodrigues dos Santos ◽  
...  

Spinal cord trauma induced by ballistic projectiles is considered uncommon in domestic animals, particularly in cats. Outdoor, and indoor-outdoor cats are at greater risk of receiving gunshot wounds. Despite their small size, moderate speed and poor aerodynamic design, projectiles from compressed air guns (pellet guns) can cause severe injury. Treatment and prognosis of animals presented with gun-related injuries can vary considerably, depending on the affected spinal segment location of the lesions, and extent of tissue damage. Due to the unusual occurrence, of this type of trauma in feline patients, the goal of this report is to describe the neurologic, radiographic, and surgical findings in five cats with spinal injury secondary to air gun projectiles.


2015 ◽  
Author(s):  
Kathy Chuang ◽  
William S David

“Radiculopathies” are disorders of nerve roots, whereas “neuropathies” are disorders of the peripheral nerve. These disorders may involve single roots or nerves, multiple roots or nerves, and even other aspects of the nervous system. This chapter reviews the anatomy and pathophysiology of the peripheral nervous system; the general approach to radiculopathies and neuropathies, including clinical manifestations and localization, diagnostic studies, and treatment; radiculopathies, including anatomy, cervical radiculopathy, lumbosacral radiculopathy, thoracic radiculopathy, and cauda equina syndrome; and neuropathies, including  mononeuropathies and polyneuropathies. Tables describe the innervation of select nerve roots and peripheral nerves, differences between root and nerve lesions, commonly used neuropathic pain medications, distinctive patterns of neuropathy with limited differential diagnoses, differential diagnosis of demyelinating polyneuropathy, drugs that may cause polyneuropathy, and neuropathies associated with diabetes mellitus. Figures show the anatomy of a spinal segment, nerve fascicles, ultrasound images of the median nerve, magnetic resonance imaging of the lumbosacral spine, the Spurling maneuver, and physical examination maneuvers for lumbosacral radiculopathies. This review contains 6 highly rendered figures, 8 tables, and 77 references.


2020 ◽  
Vol 10 (4) ◽  
pp. 1491
Author(s):  
Shun Zeng ◽  
Yuegang Tan ◽  
Zhang Li ◽  
Ping Wu ◽  
Tianliang Li ◽  
...  

Driven by the layout design of devices arranged on the spine of quadruped robot which has a symmetry spine with a flexible joint, we explore the effect of mass-center position of spinal segment (MCPSS) on dynamic performances of quadruped bounding. A simplified model is introduced with MCPSS set as an independent parameter. Periodically quadruped bounding motions are generated to calculate different dynamic performances related to different MCPSS at the low, medium, and high horizontal speeds, respectively. The results indicate MCPSS corresponding to the optimal or suboptimal dynamic performances mainly gather at two positions: the hip joint and the geometric center of spinal segment. MCPSS near the hip joint leads to the largest stride period, stride length, and spinal oscillation-margin at all speeds. The smallest duty factor can also be obtained at the medium and high speeds. These improved inherent characteristics offer advantages in leg-orientation control and fast movement effectively. MCPSS near the geometric center of spinal segment brings the best self-stability, the smallest mass-center vertical fluctuation, and the smallest maximum foot-end force at all speeds, which should greatly enhance resistances to vertical jitters and reduce torque-demands of joint-drivers. This study should give useful suggestions to robot designs in reality.


2009 ◽  
Vol 11 (4) ◽  
pp. 413-416 ◽  
Author(s):  
R. Shane Tubbs ◽  
Diala El-Zammar ◽  
Marios Loukas ◽  
Ayhan Cömert ◽  
Aaron A. Cohen-Gadol

Object Intradural intercommunications between adjacent nerve roots have received scant attention in the literature. Moreover, the pattern of these connections among individuals harboring normal, pre-, and postfixed brachial plexuses, to the authors' knowledge, has not been explored. Methods Sixty adult cadavers were evaluated for the presence of a normal, prefixed, or postfixed brachial plexus. Next, with the cadaver placed prone, laminectomies of all cervical and the upper thoracic vertebrae were performed. The dura mater was opened and observations were made for the presence of neural intercommunications between the roots of adjacent spinal levels. Any correlations between such root communications and pre- and postfixed brachial plexuses were explored. Results Among the cadavers, 28% harbored prefixed and 5% harbored postfixed brachial plexuses. Intercommunications between adjacent dorsal roots were more or less equally distributed between left and right sides. A total of 134 interconnections were identified between C-1 and T-2 levels. No interconnection spanned more than one spinal segment. When all sides were included, in ascending order based on the number of interconnections present, interconnections between roots were found between T-1 and T-2, C-1 and C-2, C-8 and T-1, C-2 and C-3, C-3 and C-4, C-4 and C-5, C-7 and C-8, C-6 and C-7, and C-5 and C-6. In this same order, the percent of total connections for each of these levels was 0, 0.8, 2, 7, 13, 15, 16, 20, and 25%. For left and right sides, a total of 73 and 61 interconnections were identified, respectively. This order of concentration was found to have no statistical difference between cadavers that had a normal arrangement of the brachial plexus, a prefixed brachial plexus, or a postfixed brachial plexus. No specimen was found to have interconnections between adjacent ventral roots. Conclusions Such variations as intradural interconnections may lead to misinterpretation of spinal levels harboring pathological entities of the spinal axis and should be considered during surgical procedures of this region such as rhizotomy. However, the present study did not find a correlation between the level of these interconnections and whether the brachial plexus was pre- or postfixed (that is, there were no observable shifts intradurally that corresponded to the extradural segmental contributions to the brachial plexus).


1985 ◽  
Vol 53 (6) ◽  
pp. 1551-1566 ◽  
Author(s):  
S. M. Barman ◽  
G. L. Gebber

We studied the following properties of cat ventrolateral medullary (VLM) neurons that projected to the thoracic spinal cord: the relationship between their spontaneous activity and that in the inferior cardiac postganglionic sympathetic nerve, their responses to baroreceptor-reflex activation, their axonal conduction velocities, the funicular trajectories of their axons, the likely sites of termination of their axons, and their axonal branching patterns. Microstimulation in the second thoracic spinal segment (T2) antidromically activated 67 VLM neurons (as determined with time-controlled collision of spontaneous and evoked action potentials), whose activity was correlated to inferior cardiac sympathetic nerve discharge (as determined with spike-triggered averaging). We tested the effect of baroreceptor-reflex activation on the firing rate of 20 of these VLM-spinal neurons. Because the firing rate decreased in each instance, these neurons apparently subserved a sympathoexcitatory function. The axonal branching patterns of 51 VLM-spinal sympathoexcitatory neurons were studied. Thirty-four neurons were antidromically activated by stimulation in the T2 gray matter and in more caudal thoracic spinal segments (T11 and/or T6). In each case, the antidromic response evoked by stimulation in the T2 gray matter was due to activation of an axonal branch rather than the main axon (via current spread to the white matter). This was demonstrated with tests that included time-controlled collision of the action potentials initiated by stimulation in T2 and a more caudal thoracic spinal segment. Some VLM-spinal axons that projected to T11 branched in T6 as well as in T2. These data indicate that some VLM-spinal neurons exerted widespread excitatory influences on sympathetic outflow. Seventeen VLM sympathoexcitatory neurons that innervated the T2 gray matter could not be antidromically activated by stimulation in T5, T6, and T11 despite an extensive search at each level. Thus the axonal projections of some VLM-spinal neurons were restricted to upper thoracic segments. Antidromic mapping in T2 revealed that the axons of VLM sympathoexcitatory neurons coursed through the dorsolateral or ventrolateral funiculus to innervate the region of the intermediolateral nucleus. Mean axonal conduction velocity was 3.5 +/- 0.3 m/s. Those VLM-spinal axons restricted to upper thoracic segments generally were located dorsally and/or medially to those that innervated widely separated thoracic segments. The discharges of 35 other VLM neurons that were antidromically activated by T2 stimulation were not related to sympathetic nerve activity.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 43 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Gianluca Del Rossi ◽  
Mary Beth H. Horodyski ◽  
Bryan P. Conrad ◽  
Christian P. Di Paola ◽  
Matthew J. Di Paola ◽  
...  

Abstract Context: To achieve full spinal immobilization during on-the-field management of an actual or potential spinal injury, rescuers transfer and secure patients to a long spine board. Several techniques can be used to facilitate this patient transfer. Objective: To compare spinal segment motion of cadavers during the execution of the 6-plus–person (6+) lift, lift-and-slide (LS), and logroll (LR) spine-board transfer techniques. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Eight medical professionals (1 woman, 7 men) with 5 to 32 years of experience were enlisted to help carry out the transfer techniques. In addition, test conditions were performed on 5 fresh cadavers (3 males, 2 females) with a mean age of 86.2 ± 11.4 years. Main Outcomes Measure(s): Three-dimensional angular and linear motions initially were recorded during execution of transfer techniques, initially using cadavers with intact spines and then after C5-C6 spinal segment destabilization. The mean maximal linear displacement and angular motion obtained and calculated from the 3 trials for each test condition were included in the statistical analysis. Results: Flexion-extension angular motion, as well as anteroposterior and distraction-compression linear motion, did not vary between the LR and either the 6+ lift or LS. Compared with the execution of the 6+ lift and LS, the execution of the LR generated significantly more axial rotation (P  =  .008 and .001, respectively), more lateral flexion (P  =  .005 and .003, respectively), and more medial-lateral translation (P  =  .003 and .004, respectively). Conclusions: A small amount of spinal motion is inevitable when executing spine-board transfer techniques; however, the execution of the 6+ lift or LS appears to minimize the extent of motion generated across a globally unstable spinal segment.


2020 ◽  
pp. 219256822092294
Author(s):  
Nicholas Hui ◽  
Kevin Phan ◽  
Mei-Yi Lee ◽  
Jack Kerferd ◽  
Telvinderjit Singh ◽  
...  

Study Design: A systematic review and meta-analysis. Objectives: Cervical total disc replacement (CTDR) can preserve range of motion (ROM) of the operated spinal segment in cadaver studies. Evidence is less clear in clinical trials. The present study aims to investigate the differences in cervical biomechanics before and after CTDR and its association with heterotopic ossification (HO) development. Method: Articles that reported the rate of HO and ≥1 difference in cervical biomechanics were included in quantitative analyses. We pooled the mean difference (MD) of cervical biomechanics before and after CTDR. Subgroup analyses and metaregression analyses were conducted to identify potential contributors to heterogeneity. Results: Of the 599 studies screened, 35 studies were included in the final analysis. In comparison with preoperative values, ROM of the spinal segment inferior (MD: 0.38; 95% CI: 0.02 to 0.74) and superior (MD: 0.43; 95% CI: 0.12 to 0.75) to the surgical spinal segment, functional spinal unit (FSU) angle (MD: 2.23; 95% CI: 1.11 to 3.35), and C2/C7 Cobb angle (MD: 3.49; 95% CI: 1.73 to 5.25) significantly increased after CTDR. In contrast, FSU and cervical ROM at baseline were no different from follow-up. On multivariable meta-regression analyses, HO and ROM-limiting HO were not associated with changes in cervical biomechanics. Single-level CTDR and duration of follow-up were associated with changes in cervical biomechanics. Conclusion: Our study reported the pooled mean of biomechanics at baseline and final follow-up and their differences. The changes in biomechanics were not associated with the rates of HO and ROM-limiting HO.


Sign in / Sign up

Export Citation Format

Share Document