Intradural cervical root adjacent interconnections in the normal, prefixed, and postfixed brachial plexus

2009 ◽  
Vol 11 (4) ◽  
pp. 413-416 ◽  
Author(s):  
R. Shane Tubbs ◽  
Diala El-Zammar ◽  
Marios Loukas ◽  
Ayhan Cömert ◽  
Aaron A. Cohen-Gadol

Object Intradural intercommunications between adjacent nerve roots have received scant attention in the literature. Moreover, the pattern of these connections among individuals harboring normal, pre-, and postfixed brachial plexuses, to the authors' knowledge, has not been explored. Methods Sixty adult cadavers were evaluated for the presence of a normal, prefixed, or postfixed brachial plexus. Next, with the cadaver placed prone, laminectomies of all cervical and the upper thoracic vertebrae were performed. The dura mater was opened and observations were made for the presence of neural intercommunications between the roots of adjacent spinal levels. Any correlations between such root communications and pre- and postfixed brachial plexuses were explored. Results Among the cadavers, 28% harbored prefixed and 5% harbored postfixed brachial plexuses. Intercommunications between adjacent dorsal roots were more or less equally distributed between left and right sides. A total of 134 interconnections were identified between C-1 and T-2 levels. No interconnection spanned more than one spinal segment. When all sides were included, in ascending order based on the number of interconnections present, interconnections between roots were found between T-1 and T-2, C-1 and C-2, C-8 and T-1, C-2 and C-3, C-3 and C-4, C-4 and C-5, C-7 and C-8, C-6 and C-7, and C-5 and C-6. In this same order, the percent of total connections for each of these levels was 0, 0.8, 2, 7, 13, 15, 16, 20, and 25%. For left and right sides, a total of 73 and 61 interconnections were identified, respectively. This order of concentration was found to have no statistical difference between cadavers that had a normal arrangement of the brachial plexus, a prefixed brachial plexus, or a postfixed brachial plexus. No specimen was found to have interconnections between adjacent ventral roots. Conclusions Such variations as intradural interconnections may lead to misinterpretation of spinal levels harboring pathological entities of the spinal axis and should be considered during surgical procedures of this region such as rhizotomy. However, the present study did not find a correlation between the level of these interconnections and whether the brachial plexus was pre- or postfixed (that is, there were no observable shifts intradurally that corresponded to the extradural segmental contributions to the brachial plexus).

2012 ◽  
Vol 6 (4) ◽  
pp. 49-52
Author(s):  
N Satyanarayana ◽  
R Guha ◽  
P Sunitha ◽  
GN Reddy ◽  
G Praveen ◽  
...  

Brachial plexus is the plexus of nerves, that supplies the upper limb.Variations in the branches of brachial plexus are common but variations in the roots and trunks are very rare. Here, we report one of the such rare variations in the formations of the lower trunk of the brachial plexus in the right upper limb of a male cadaver. In the present case the lower trunk was formed by the union of ventral rami of C7,C8 and T1 nerve roots. The middle trunk was absent. Upper trunk formation was normal. Journal of College of Medical Sciences-Nepal,2011,Vol-6,No-4, 49-52 DOI: http://dx.doi.org/10.3126/jcmsn.v6i4.6727


Neurosurgery ◽  
2001 ◽  
Vol 48 (6) ◽  
pp. 1269-1277 ◽  
Author(s):  
Madjid Samii ◽  
Steffani Bear-Henney ◽  
Wolf Lüdemann ◽  
Marcos Tatagiba ◽  
Ulrike Blömer

Abstract OBJECTIVE Significant numbers of patients experience intractable pain after brachial plexus root avulsions. Medications and surgical procedures such as amputation of the limb are often not successful in pain treatment. METHODS Forty-seven patients with intractable pain after traumatic cervical root avulsions were treated with dorsal root entry zone coagulation between 1980 and 1998. The dorsal root entry zone coagulation procedure was performed 4 months to 12 years after the trauma, and patients were monitored for up to 18 years (average follow-up period, 14 yr). RESULTS Immediately after surgery, 75% of patients experienced significant pain reduction; this value was reduced to 63% during long-term follow-up monitoring. Nine patients experienced major complications, including subdural hematomas (n = 2) and motor weakness of the lower limb (n = 7). Improved coagulation electrodes with thermistors that could produce smaller and more-accurate lesion sizes, which were introduced in 1989, significantly reduced the number of complications. CONCLUSION Central deafferentation pain that persists and becomes intractable among patients with traumatic cervical root avulsions has been difficult to treat in the past. Long-term follow-up monitoring of patients who underwent the dorsal root entry zone coagulation procedure in the cervical cord indicated that long-lasting satisfactory relief is possible for the majority of individuals, with acceptable morbidity rates.


1994 ◽  
Vol 19 (1) ◽  
pp. 55-59 ◽  
Author(s):  
M. OCHI ◽  
Y. IKUTA ◽  
M. WATANABE ◽  
K. KIMOR ◽  
K. ITOH

Findings in 34 patients with traumatic brachial plexus injury documented by surgical exploration and intra-operative somatosensory-evoked potentials were correlated with findings on myelography and magnetic resonance imaging (MRI) to determine whether MRI can identify nerve root avulsion. The coronal and sagittal planes were not able to demonstrate avulsion of the individual nerve roots. The axial and axial oblique planes did provide useful information to determine which nerve root was avulsed in the upper plexus, although it was difficult to clearly delineate the lower cervical rootlets. The accuracy of MRI was 73% for C5 and 64% for C6 and that of myelograpby 63% for C5 and 64% for C6. Thus, the diagnostic accuracy of MRI for upper nerve roots was slightly superior to myelography. Although its primary diagnostic value is limited to the upper nerve roots whose avulsion is relatively difficult to diagnose by myelography, MRI can provide useful guidance in the waiting period prior to surgical exploration after brachial plexus injury.


2004 ◽  
Vol 45 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Stephanie R. Rudich ◽  
Daniel A. Feeney ◽  
Kari L. Anderson ◽  
Patricia A. Walter

2021 ◽  
pp. 1-9
Author(s):  
Kyosuke Koide ◽  
Atsuhiko Sugiyama ◽  
Hajime Yokota ◽  
Hiroki Mukai ◽  
Jiaqi Wang ◽  
...  

<b><i>Introduction:</i></b> This study assessed the morphological changes and diffusion tensor imaging (DTI)-derived parameters of the brachial plexus using magnetic resonance neurography (MRN) in patients with anti-myelin-associated glycoprotein (anti-MAG) neuropathy. <b><i>Methods:</i></b> Eight patients with anti-MAG neuropathy underwent MRN of the brachial plexus with 3-dimensional (3D) short tau inversion recovery (STIR) and DTI sequences. Two neuroradiologists and a neurologist qualitatively assessed nerve hypertrophy on 3D STIR MRN. The cross-sectional area (CSA) of the nerve roots was measured. Quantitative analyses of fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, and MD) were obtained after postprocessing on DTI and manual segmentation. <b><i>Results:</i></b> There was nerve hypertrophy in 37.5% of the patients with anti-MAG neuropathy. All patients with anti-MAG neuropathy with nerve hypertrophy were refractory to rituximab therapy. The CSA of the nerve roots was inversely correlated with FA and positively correlated with MD and RD. FA decreased in the nerve roots and inversely correlated with disease duration. <b><i>Conclusions:</i></b> Nerve hypertrophy appears in the proximal portion of peripheral nerves, such as the brachial plexus, in patients with anti-MAG neuropathy. Altered diffusion in the nerve roots might be associated with the loss of myelin integrity due to the demyelination process in anti-MAG neuropathy.


2015 ◽  
Author(s):  
Kathy Chuang ◽  
William S David

“Radiculopathies” are disorders of nerve roots, whereas “neuropathies” are disorders of the peripheral nerve. These disorders may involve single roots or nerves, multiple roots or nerves, and even other aspects of the nervous system. This chapter reviews the anatomy and pathophysiology of the peripheral nervous system; the general approach to radiculopathies and neuropathies, including clinical manifestations and localization, diagnostic studies, and treatment; radiculopathies, including anatomy, cervical radiculopathy, lumbosacral radiculopathy, thoracic radiculopathy, and cauda equina syndrome; and neuropathies, including  mononeuropathies and polyneuropathies. Tables describe the innervation of select nerve roots and peripheral nerves, differences between root and nerve lesions, commonly used neuropathic pain medications, distinctive patterns of neuropathy with limited differential diagnoses, differential diagnosis of demyelinating polyneuropathy, drugs that may cause polyneuropathy, and neuropathies associated with diabetes mellitus. Figures show the anatomy of a spinal segment, nerve fascicles, ultrasound images of the median nerve, magnetic resonance imaging of the lumbosacral spine, the Spurling maneuver, and physical examination maneuvers for lumbosacral radiculopathies. This review contains 6 highly rendered figures, 8 tables, and 77 references.


1985 ◽  
Vol 53 (6) ◽  
pp. 1551-1566 ◽  
Author(s):  
S. M. Barman ◽  
G. L. Gebber

We studied the following properties of cat ventrolateral medullary (VLM) neurons that projected to the thoracic spinal cord: the relationship between their spontaneous activity and that in the inferior cardiac postganglionic sympathetic nerve, their responses to baroreceptor-reflex activation, their axonal conduction velocities, the funicular trajectories of their axons, the likely sites of termination of their axons, and their axonal branching patterns. Microstimulation in the second thoracic spinal segment (T2) antidromically activated 67 VLM neurons (as determined with time-controlled collision of spontaneous and evoked action potentials), whose activity was correlated to inferior cardiac sympathetic nerve discharge (as determined with spike-triggered averaging). We tested the effect of baroreceptor-reflex activation on the firing rate of 20 of these VLM-spinal neurons. Because the firing rate decreased in each instance, these neurons apparently subserved a sympathoexcitatory function. The axonal branching patterns of 51 VLM-spinal sympathoexcitatory neurons were studied. Thirty-four neurons were antidromically activated by stimulation in the T2 gray matter and in more caudal thoracic spinal segments (T11 and/or T6). In each case, the antidromic response evoked by stimulation in the T2 gray matter was due to activation of an axonal branch rather than the main axon (via current spread to the white matter). This was demonstrated with tests that included time-controlled collision of the action potentials initiated by stimulation in T2 and a more caudal thoracic spinal segment. Some VLM-spinal axons that projected to T11 branched in T6 as well as in T2. These data indicate that some VLM-spinal neurons exerted widespread excitatory influences on sympathetic outflow. Seventeen VLM sympathoexcitatory neurons that innervated the T2 gray matter could not be antidromically activated by stimulation in T5, T6, and T11 despite an extensive search at each level. Thus the axonal projections of some VLM-spinal neurons were restricted to upper thoracic segments. Antidromic mapping in T2 revealed that the axons of VLM sympathoexcitatory neurons coursed through the dorsolateral or ventrolateral funiculus to innervate the region of the intermediolateral nucleus. Mean axonal conduction velocity was 3.5 +/- 0.3 m/s. Those VLM-spinal axons restricted to upper thoracic segments generally were located dorsally and/or medially to those that innervated widely separated thoracic segments. The discharges of 35 other VLM neurons that were antidromically activated by T2 stimulation were not related to sympathetic nerve activity.(ABSTRACT TRUNCATED AT 400 WORDS)


1894 ◽  
Vol 54 (326-330) ◽  
pp. 243-272 ◽  

The first part of my task is to express my great indebtedness to Professor Victor Horsley for enabling me to carry out this investigation under favourable circumstances at the Pathological Laboratory of University College, and for his great willingness at all times to criticise the results which I obtained. In a paper on the functions of the nerve roots which enter into the formation of the brachial plexus of the dog, I gave an account of the views that have been expressed and the work done in connexion with the limb plexuses. The hypotheses as to their significance advanced by Reil, Scarpa, A. Monro, Sömmering, and others were not alluded to, as they were mere conjectures, unsupported by any substantial evidence.


2008 ◽  
Vol 97 (4) ◽  
pp. 317-323 ◽  
Author(s):  
P. Songcharoen

Brachial plexus injury in adults is commonly caused by motorcycle accidents. Surgical management consists of nerve repair and nerve grafting for extraforaminal nerve root or trunk injury, and of neurotization or nerve transfer for nerve roots avulsion. In general, the results regarding restoration of shoulder and elbow function are good but reinnervation of the forearm muscles is less than safisfactory in respect to restoration of hand function. Functioning free muscle transfer in combination with selective nerve transfer is a reasonable alternative surgical procedure.


Sign in / Sign up

Export Citation Format

Share Document