scholarly journals Stable sets of maximum weight in (P7, banner)-free graphs

2008 ◽  
Vol 308 (1) ◽  
pp. 20-33 ◽  
Author(s):  
Raffaele Mosca
Keyword(s):  
2011 ◽  
Vol 38 ◽  
pp. 129-134
Author(s):  
Cédric Bentz ◽  
Marie-Christine Costa ◽  
Dominique de Werra ◽  
Christophe Picouleau ◽  
Bernard Ries
Keyword(s):  

2012 ◽  
Vol 4 (4) ◽  
pp. 363-381 ◽  
Author(s):  
Stephan Held ◽  
William Cook ◽  
Edward C. Sewell

2021 ◽  
Author(s):  
Jadder Bismarck de Sousa Cruz ◽  
Cândida Nunes da Silva ◽  
Orlando Lee

Let $k$ be a positive integer. A \emph{partial $k$-coloring} of a digraph $D$ is a set $\calC$ of $k$ disjoint stable sets and has \emph{weight} defined as $\sum_{C \in \calC} |C|$. An \emph{optimal} $k$-coloring is a $k$-coloring of maximum weight. A \emph{path partition} of a digraph $D$ is a set $\calP$ of disjoint paths of $D$ that covers its vertex set and has \emph{$k$-norm} defined as $\sum_{P \in \mathcal{P}} \min\{|P|,k\}$. A path partition $\calP$ is \emph{$k$-optimal} if it has minimum $k$-norm. A digraph $D$ is \emph{matching-spine} if its vertex set can be partitioned into sets $X$ and $Y$, such that $D[X]$ has a Hamilton path and the arc set of $D[Y]$ is a matching. Linial (1981) conjectured that the $k$-norm of a $k$-optimal path partition of a digraph is at most the weight of an optimal partial $k$-coloring. We present some partial results on this conjecture for matching-spine digraphs.


2020 ◽  
Vol 62 ◽  
pp. 39-47
Author(s):  
A. I. Lokhova ◽  
E. Z. Savin ◽  
A. M. Rusanov ◽  
A. A. Mushinskiy

The article presents the results of studying the diversity of pear rootstock forms in terms of yield and seed productivity. The research was carried out at the experimental sites of the Orenburg Experimental Station of Horticulture and Viticulture of AllRussian Horticultural Institute for Breeding, Agrotechnology and Nursery and the Botanical Garden of the Orenburg State University in 2017-2019, in typical soil and climatic conditions of the Orenburg city. The purpose of the study is to identify pear rootstock forms characterized by high yield and stable seed productivity for use in the future as a seed rootstock. During the research, 15 pear accessions were studied; the planting scheme was 6x4 m. As a result of research, it was found that the rootstock form Temno-zelenaya is characterized by a high yield (40 kg/tree). High seed productivity of more than 6 seeds in one fruit was observed in samples: Vernaya (6.0-6.5 pcs.), SK-1, SK-3 (6.1-7.8 pcs.), SK-2 (7.0-7.5 pcs.), Chang Bai Li (7.4-7.7 pcs.), Semennaya 214 (7.5-7.8 pcs.). It was revealed that the Xiao he Bai Li variety is characterized by the maximum weight of 1000 seeds (65.2 g). Analysis of accessions by seed yield established that a consistently high yield is observed in the varieties Chang Bai Li (2.5-4.2 %), Vernaya (3.96-4.18 %) and forms SK-1 (2.0-3.25%), SK-2 (2.25-2.75 %), SK-3 (1.43-4.0 %). Pear rootstock forms Chang Bai Li, Vernaya, Semennaya 214, SK-1, SK-2, SK-3 were identifi ed, which can be recommended for production testing as seed pear rootstocks for the conditions of the steppe zone of the Southern Urals.


2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 160
Author(s):  
Qiaoji Xu ◽  
Lingling Jin ◽  
James H. Leebens-Mack ◽  
David Sankoff

The RACCROCHE pipeline reconstructs ancestral gene orders and chromosomal contents of the ancestral genomes at all internal vertices of a phylogenetic tree. The strategy is to accumulate a very large number of generalized adjacencies, phylogenetically justified for each ancestor, to produce long ancestral contigs through maximum weight matching. It constructs chromosomes by counting the frequencies of ancestral contig co-occurrences on the extant genomes, clustering these for each ancestor and ordering them. The main objective of this paper is to closely simulate the evolutionary process giving rise to the gene content and order of a set of extant genomes (six distantly related monocots), and to assess to what extent an updated version of RACCROCHE can recover the artificial ancestral genome at the root of the phylogenetic tree relating to the simulated genomes.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


Author(s):  
Klaus D. Goepel

The analytic hierarchy process (AHP) remains a popular multi-criteria decision method. One topic under discussion of AHP is the use of different scales to translate judgments into ratios. The author makes a new approach to compare different scale functions and to derive a recommendation for the application of scales. The approach is based on simple analytic functions and takes into consideration the number of criteria of the decision problem. A generalization of the so-called balanced scale is proposed, and a new adaptive-balanced scale is introduced. Scales are then categorized and compared based on weight boundaries and weight ratios, weight uncertainties, weight dispersion and number of decision criteria. Finally, a practical example of a decision hierarchy is presented applying the different scales. The results show that the generalized balanced scale improves weight dispersion and weight uncertainty in comparison to the fundamental AHP scale. The proposed adaptive-balanced scale overcomes the problem of a change of the maximum weight depending on the number of decision criteria.


Sign in / Sign up

Export Citation Format

Share Document