Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth

2004 ◽  
Vol 27 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Charlotte Rehfeldt ◽  
Pia M. Nissen ◽  
Gerda Kuhn ◽  
Mogens Vestergaard ◽  
Klaus Ender ◽  
...  
2010 ◽  
Vol 120 (11) ◽  
pp. 4007-4020 ◽  
Author(s):  
Mahendra D. Mavalli ◽  
Douglas J. DiGirolamo ◽  
Yong Fan ◽  
Ryan C. Riddle ◽  
Kenneth S. Campbell ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1906
Author(s):  
Doaa Ibrahim ◽  
Hanan S. Al-Khalaifah ◽  
Ahmed Abdelfattah-Hassan ◽  
Haitham Eldoumani ◽  
Safaa I. Khater ◽  
...  

Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken’s growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 μg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 μg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 μg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 μg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 μg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 μg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 μg/kg GHBP group. Overall, our findings indicated that administration of 200 μg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Gene ◽  
2021 ◽  
Vol 783 ◽  
pp. 145562
Author(s):  
Huadong Yin ◽  
Shunshun Han ◽  
Can Cui ◽  
Yan Wang ◽  
Diyan Li ◽  
...  

2011 ◽  
Vol 26 (2) ◽  
pp. 748-756 ◽  
Author(s):  
Laurence Pessemesse ◽  
Audrey Schlernitzauer ◽  
Chamroeun Sar ◽  
Jonathan Levin ◽  
Stéphanie Grandemange ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Guoda Ma ◽  
Yajun Wang ◽  
You Li ◽  
Lili Cui ◽  
Yujuan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document