scholarly journals Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan – A Rock-Eval survey

Author(s):  
François Baudin ◽  
Elsa Stetten ◽  
Johann Schnyder ◽  
Karine Charlier ◽  
Philippe Martinez ◽  
...  
2017 ◽  
Vol 142 ◽  
pp. 197-218 ◽  
Author(s):  
A.M. Pruski ◽  
C. Decker ◽  
E. Stetten ◽  
G. Vétion ◽  
P. Martinez ◽  
...  

2021 ◽  
Vol 17 (3) ◽  
pp. 1025-1050
Author(s):  
Cécile L. Blanchet ◽  
Rik Tjallingii ◽  
Anja M. Schleicher ◽  
Stefan Schouten ◽  
Martin Frank ◽  
...  

Abstract. Ocean deoxygenation is a rising threat to marine ecosystems and food resources under present climate warming conditions. Organic-rich sapropel layers deposited in the Mediterranean Sea provide a natural laboratory to study the processes that have controlled changes in seawater oxygen levels in the recent geological past. Our study is based on three sediment cores spanning the last 10 000 years and located on a bathymetric transect offshore from the western distributaries of the Nile delta. These cores are partly to continuously laminated in the sections recording sapropel S1, which is indicative of bottom-water anoxia above the western Nile deep-sea fan. We used a combination of microfacies analyses and inorganic and organic geochemical measurements to reconstruct changes in oxygenation conditions at seasonal to millennial timescales. Millimetre-thick laminations are composed of detrital, biogenic and chemogenic sublayers reflecting seasonal successions of sedimentation. Dark layers reflect the deposition of summer floods and two types of light layers correspond to autumn plankton blooms and authigenic carbonates formed in the water column during spring–early summer, respectively. The isotopic signature of the authigenic carbonates suggests permanent anoxic to euxinic bottom waters resulting in high levels of anaerobic remineralization of organic matter and highlights their potential to reconstruct seawater chemistry at times when benthic fauna was absent. Ratios of major elements combined with biomarkers of terrestrial and marine organic matter and redox-sensitive compounds allow changes in terrigenous input, primary productivity and past deoxygenation dynamics on millennial timescales to be tracked. Rapid fluctuations of oxygenation conditions in the upper 700 m water depth occurred above the Nile deep-sea fan between 10 and 6.5 ka BP, while deeper cores recorded more stable anoxic conditions. Synchronous changes in terrigenous input, primary productivity and past oxygenation dynamics after 6.5 ka BP show that runoff-driven eutrophication played a central role in rapid oxygenation changes in the south-eastern Levantine Basin. These findings are further supported by other regional records and reveal time-transgressive changes in oxygenation state driven by rapid changes in primary productivity during a period of long-term deep-water stagnation.


Author(s):  
Johann Schnyder ◽  
Elsa Stetten ◽  
François Baudin ◽  
Audrey M. Pruski ◽  
Philippe Martinez

Author(s):  
Claire Croguennec ◽  
Livio Ruffine ◽  
Bernard Dennielou ◽  
François Baudin ◽  
Jean-Claude Caprais ◽  
...  

2015 ◽  
Vol 369 ◽  
pp. 182-195 ◽  
Author(s):  
Elsa Stetten ◽  
François Baudin ◽  
Jean-Louis Reyss ◽  
Philippe Martinez ◽  
Karine Charlier ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


Sign in / Sign up

Export Citation Format

Share Document