Plasma membrane staining with fluorescent hybrid benzothiadiazole and coumarin derivatives: Tuning the cellular selection by molecular design

2021 ◽  
Vol 186 ◽  
pp. 109005
Author(s):  
Saulo T.A. Passos ◽  
Gisele C. Souza ◽  
Douglas C. Brandão ◽  
Daniel F.S. Machado ◽  
Cesar K. Grisolia ◽  
...  
2021 ◽  
Vol 7 ◽  
Author(s):  
Vito Vurro ◽  
Gaia Bondelli ◽  
Valentina Sesti ◽  
Francesco Lodola ◽  
Giuseppe Maria Paternò ◽  
...  

We present a series of cationic membrane-targeted azobenzene molecules, with the aim to understand how variations in molecular architecture influence the relative optical and biological properties. 1,4-Amino-substituted azobenzene was chosen as the switching unit while the number of linked alkyl chains and their cationic end-group were systematically varied. Their photophysics, membrane partitioning, and electrophysiological efficacy were studied. We found that the polar end group is a key-factor determining the interaction with the phospholipid heads in the plasma membrane bilayer and consequently the ability to dimerize. The monosubstituted photoswitch with a pyridinium-terminated alkyl chain was found to be the best candidate for photostimulation. This study provides a structure-property investigation that can guide the chemical engineering of a new generation of molecular photo-actuators.


2019 ◽  
Vol 6 (14) ◽  
pp. 2371-2384 ◽  
Author(s):  
Pedro H. P. R. Carvalho ◽  
Jose R. Correa ◽  
Karen L. R. Paiva ◽  
Michele Baril ◽  
Daniel F. S. Machado ◽  
...  

Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.


2007 ◽  
Vol 293 (4) ◽  
pp. F1308-F1313 ◽  
Author(s):  
Mitsi A. Blount ◽  
Janet D. Klein ◽  
Christopher F. Martin ◽  
Dmitry Tchapyjnikov ◽  
Jeff M. Sands

UT-A1 is regulated by vasopressin and is localized to the apical membrane and intracellular compartment of inner medullary collecting duct (IMCD) cells. UT-A3 is also expressed in the IMCD and is regulated by forskolin in heterologous systems. The goal of the present study is to investigate mechanisms by which vasopressin regulates UT-A3 in rat IMCD. In fresh suspensions of rat IMCD, forskolin increases the phosphorylation of UT-A3, similar to UT-A1. Biotinylation studies indicate that UT-A3 is located in the plasma membrane. Forskolin treatment increases the abundance of UT-A3 in the plasma membrane similar to UT-A1. However, these two transporters do not form a complex through a protein-protein interaction, suggesting that transporter function is unique to each protein. While immunohistochemistry localized UT-A3 to the basal and lateral membranes, a majority of the staining was cytosolic. Immunohistochemistry of vasopressin-treated rat kidney sections also localized UT-A3 primarily to the cytosol with basal and lateral membrane staining but also showed some apical membrane staining in some IMCD cells. This suggests that under normal conditions, UT-A3 functions as the basolateral transporter but in a high cAMP environment, the transporter may move from the cytosol to all plasma membranes to increase urea flux in the IMCD. In summary, this study confirms that UT-A3 is located in the inner medullary tip where it is expressed in the basolateral membrane, shows that UT-A3 is a phosphoprotein in rat IMCD that can be trafficked to the plasma membrane independent of UT-A1, and suggests that vasopressin may induce UT-A3 expression in the apical plasma membrane of IMCD.


2019 ◽  
Author(s):  
Mayeul Collot ◽  
Emmanuel Boutant ◽  
Kyong Tkhe Fam ◽  
Lydia Danglot ◽  
Andrey S. Klymchenko

ABSTRACTThe plasma membrane (PM) plays a major role in many biological processes; therefore its proper fluorescence staining is required in bioimaging. Among the commercially available PM probes, styryl dye FM1-43 is one of the most widely used. In this work, we demonstrated that fine chemical modifications of FM1-43 can dramatically improve the PM staining. The newly developed probes, SP-468 and SQ-535 were found to display enhanced photophysical properties (reduced crosstalk, higher brightness, improved photostability) and unlike FM1-43, provided excellent and immediate PM staining in 5 different mammalian cell lines including neurons (primary culture and tissue imaging). Additionally, we showed that the new probes displayed differences in their internalization pathways compared to their parent FM1-43. Finally, we demonstrated that the modifications made to FM1-43 did not impair the ability of the new probes to stain the PM of plant cells. Overall, this work presents new useful probes for PM imaging in cells and tissues and provides insights on the molecular design of new PM targeting molecules.


Author(s):  
Sayed Mir Sayed ◽  
Hao-Ran Jia ◽  
Yao-Wen Jiang ◽  
Ya-Xuan Zhu ◽  
Liang Ma ◽  
...  

Plasma membrane (PM), a fundamental building component for a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology...


2004 ◽  
Vol 286 (5) ◽  
pp. F881-F892 ◽  
Author(s):  
Dao-Hong Lin ◽  
Hyacinth Sterling ◽  
Baofeng Yang ◽  
Steven C. Hebert ◽  
Gerhard Giebisch ◽  
...  

We previously demonstrated that dietary K intake regulates the expression of Src family PTK, which plays an important role in controlling the expression of ROMK1 in plasma membrane (Wei Y, Bloom P, Lin D-H, Gu RM, and Wang WH. Am J Physiol Renal Physiol 281: F206–F212, 2001). In the present study, we used the immunofluorescence staining technique to demonstrate the presence of c-Src, a member of Src family PTK, in the thick ascending limb (TAL) and collecting duct. Confocal microscopy shows that c-Src is highly expressed in the renal cortex and outer medulla. Moreover, c-Src and ROMK are coexpressed in the same nephron segment. Also, the positive staining of c-Src is visible in tubules stained with Tamm-Horsfall glycoprotein or aquaporin-2. This suggests that c-Src is present in the TAL, cortical collecting duct (CCD), and outer medullary collecting duct (OMCD). To study the role of PTK in the regulation of ROMK membrane expression in the TAL and CCD, we carried out immunocytochemical staining with ROMK antibody in the CCD or TAL from rats on either a high-K (HK) or K-deficient (KD) diet. A sharp membrane staining of ROMK can be observed in the TAL from rats on both HK and KD diets. However, a clear plasma membrane staining can be observed only in the CCD from rats on a HK diet but not from those on a KD diet. Treatment of the CCD from rats on a HK diet with phenylarsine oxide (PAO) decreases the positive staining in the plasma/subapical membrane and increases the ROMK staining in the intracellular compartment. However, PAO treatment did not significantly alter the staining pattern of ROMK in the TAL. Moreover, the biotinylation technique has also confirmed that neither herbimycin A nor PAO has significantly changed the biotin-labeled ROMK2 in HEK293 cells transfected with ROMK2 and c-Src. We conclude that c-Src is expressed in the TAL, CCD, and OMCD and that stimulation of PTK increases the ROMK channels in the intracellular compartment but decreases them in the apical/subapical membrane in the CCD.


Author(s):  
E. Keyhani

The matrix of biological membranes consists of a lipid bilayer into which proteins or protein aggregates are intercalated. Freeze-fracture techni- ques permit these proteins, perhaps in association with lipids, to be visualized in the hydrophobic regions of the membrane. Thus, numerous intramembrane particles (IMP) have been found on the fracture faces of membranes from a wide variety of cells (1-3). A recognized property of IMP is their tendency to form aggregates in response to changes in experi- mental conditions (4,5), perhaps as a result of translational diffusion through the viscous plane of the membrane. The purpose of this communica- tion is to describe the distribution and size of IMP in the plasma membrane of yeast (Candida utilis).Yeast cells (ATCC 8205) were grown in synthetic medium (6), and then harvested after 16 hours of culture, and washed twice in distilled water. Cell pellets were suspended in growth medium supplemented with 30% glycerol and incubated for 30 minutes at 0°C, centrifuged, and prepared for freeze-fracture, as described earlier (2,3).


Author(s):  
Hilton H. Mollenhauer ◽  
W. Evans

The pellicular structure of Euglena gracilis consists of a series of relatively rigid strips (Fig. 1) composed of ridges and grooves which are helically oriented along the cell and which fuse together into a common junction at either end of the cell. The strips are predominantly protein and consist in part of a series of fibers about 50 Å in diameter spaced about 85 Å apart and with a secondary periodicity of about 450 Å. Microtubules are also present below each strip (Fig. 1) and are often considered as part of the pellicular complex. In addition, there may be another fibrous component near the base of the pellicle which has not yet been very well defined.The pellicular complex lies underneath the plasma membrane and entirely within the cell (Fig. 1). Each strip of the complex forms an overlapping junction with the adjacent strip along one side of each groove (Fig. 1), in such a way that a certain amount of sideways movement is possible between one strip and the next.


Author(s):  
G. I. Kaye ◽  
J. D. Cole

For a number of years we have used an adaptation of Komnick's KSb(OH)6-OsO4 fixation method for the localization of sodium in tissues in order to study transporting epithelia under a number of different conditions. We have shown that in actively transporting rabbit gallbladder epithelium, large quantities of NaSb(OH)6 precipitate are found in the distended intercellular compartment, while localization of precipitate is confined to the inner side of the lateral plasma membrane in inactive gallbladder epithelium. A similar pattern of distribution of precipitate has been demonstrated in human and rabbit colon in active and inactive states and in the inactive colonic epithelium of hibernating frogs.


Sign in / Sign up

Export Citation Format

Share Document