intracellular compartment
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 5)

H-INDEX

26
(FIVE YEARS 2)

2020 ◽  
Vol 32 (1) ◽  
pp. 229-237
Author(s):  
Guillaume Chazot ◽  
Sandrine Lemoine ◽  
Gabriel Kocevar ◽  
Emilie Kalbacher ◽  
Dominique Sappey-Marinier ◽  
...  

BackgroundThe precise origin of phosphate that is removed during hemodialysis remains unclear; only a minority comes from the extracellular space. One possibility is that the remaining phosphate originates from the intracellular compartment, but there have been no available data from direct assessment of intracellular phosphate in patients undergoing hemodialysis.MethodsWe used phosphorus magnetic resonance spectroscopy to quantify intracellular inorganic phosphate (Pi), phosphocreatine (PCr), and βATP. In our pilot, single-center, prospective study, 11 patients with ESKD underwent phosphorus (31P) magnetic resonance spectroscopy examination during a 4-hour hemodialysis treatment. Spectra were acquired every 152 seconds during the hemodialysis session. The primary outcome was a change in the PCr-Pi ratio during the session.ResultsDuring the first hour of hemodialysis, mean phosphatemia decreased significantly (−41%; P<0.001); thereafter, it decreased more slowly until the end of the session. We found a significant increase in the PCr-Pi ratio (+23%; P=0.001) during dialysis, indicating a reduction in intracellular Pi concentration. The PCr-βATP ratio increased significantly (+31%; P=0.001) over a similar time period, indicating a reduction in βATP. The change of the PCr-βATP ratio was significantly correlated to the change of depurated Pi.ConclusionsPhosphorus magnetic resonance spectroscopy examination of patients with ESKD during hemodialysis treatment confirmed that depurated Pi originates from the intracellular compartment. This finding raises the possibility that excessive dialytic depuration of phosphate might adversely affect the intracellular availability of high-energy phosphates and ultimately, cellular metabolism. Further studies are needed to investigate the relationship between objective and subjective effects of hemodialysis and decreases of intracellular Pi and βATP content.Clinical Trial registry name and registration number Intracellular Phosphate Concentration Evolution During Hemodialysis by MR Spectroscopy (CIPHEMO), NCT03119818


2020 ◽  
Vol 319 (1) ◽  
pp. L82-L90 ◽  
Author(s):  
Kosuke Kato ◽  
Eugene H. Chang ◽  
Yin Chen ◽  
Wenju Lu ◽  
Marianne M. Kim ◽  
...  

Goblet cell metaplasia (GCM) and mucin overproduction are a hallmark of chronic rhinosinusitis (CRS) and chronic obstructive pulmonary disease (COPD). In the airways, cigarette smoke (CS) induces activation of the epidermal growth factor receptor (EGFR) leading to GCM and overexpression of the gel-forming mucin MUC5AC. Although previous studies have demonstrated that a membrane-bound mucin, MUC1, modulates the activation of CS-induced EGFR, the role of MUC1 in CS-induced GCM and mucin overproduction has not been explored. In response to CS exposure, wild-type (WT) rats displayed Muc1 translocation from the apical surface of airway epithelium to the intracellular compartment of hyperplastic intermediate cells, EGFR phosphorylation, GCM, and Muc5ac overproduction. Similarly, human CRS sinonasal tissues demonstrated hyperplasia of intermediate cells enriched with MUC1 in the intracellular compartment, which was accompanied by GCM and increased MUC5AC expression. To further evaluate the role of Muc1 in vivo, a Muc1 knockout (KO) rat (MUC in humans and Muc in animals) was developed. In contrast to WT littermates, Muc1-KO rats exhibited no activation of EGFR, and were protected from GCM and Muc5ac overproduction. Genetic knockdown of MUC1 in human lung or Muc1 knockout in primary rat airway epithelial cells led to significantly diminished EGF-induced MUC5AC production. Together, these findings suggest that MUC1-dependent EGFR activation mediates CS-induced GCM and mucin overproduction. Strategies designed to suppress MUC1-dependent EGFR activation may provide a novel therapeutic approach for treating mucin hypersecretion in CRS and COPD.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Rayudu Gopalakrishna ◽  
Angela Zhu ◽  
Andrew Oh ◽  
Julie Nguyen ◽  
Charlotte Lin ◽  
...  

Recovery of stroke and neuronal injuries requires the promotion of axonal regeneration from the remaining neurons. However, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. C-terminal domain of Nogo-A, Nogo-66 binds to the Nogo-A receptor 1 (NgR1) and induces the collapse of growth cones and inhibition of neurite outgrowth. NgR1 is also a receptor for additional axonal growth inhibitors. In this study, by using indirect immunofluorescence and biotinylation method, we have found that a cell-permeable cAMP analog (dibutyryl-cAMP) and other intracellular cAMP-elevating agents, such as forskolin, which directly activates adenylyl cyclase, and rolipram, which inhibits cyclic nucleotide phosphodiesterase, all induced rapid internalization of the cell surface NgR1 in Neuroscreen-1 (NS-1) cells. This endocytosis of NgR1 is lipid raft mediated. These cAMP-elevating agents induced a reversible distribution of NgR1 between the cell surface and intracellular compartment; NgR1 distributed to the cell surface at low levels of cAMP and distributed to an intracellular compartment at high levels of cAMP. Using pharmacological activators and inhibitors of protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac), we found that NgR1 internalization is independent of PKA but dependent on Epac. There is a correlation between the decrease in cell surface expression of NgR1 decreased sensitivity of NS-1 cells to Nogo-66-induced growth cone collapse. Therefore, besides axonal growth inhibitors affecting neurons, neurons by themselves self-regulate their own sensitivity to extracellular cues such as axonal growth inhibitors. This normal cellular regulatory mechanism may be therapeutically applied to overcome axonal growth inhibitors and enhance functional recovery after stroke and neuronal injuries.


2019 ◽  
Vol 125 (5) ◽  
pp. 841-850
Author(s):  
Zhigen Li ◽  
J Bernhard Wehr ◽  
Peng Wang ◽  
Neal W Menzies ◽  
Peter M Kopittke

Abstract Background and Aims Signal grass (Urochloa decumbens) is a widely used pasture grass in tropical and sub-tropical areas due to its high aluminiun (Al) resistance. However, the underlying mechanisms conferring this resistance are not clearly understood. Methods The Al concentrations of bulk root tissues and the intracellular compartment were examined, including the impact of a metabolic inhibitor, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Next, we examined changes in the properties of signal grass root tissues following exposure to toxic levels of Al, including the cell wall cation exchange capacity (CEC), degree of methylation and concentrations of cell wall fractions. Key Results Although signal grass was highly resistant to Al, there was a delay of 24–48 h before the expression of this resistance. We found that this delay in the expression of Al resistance was not related to the total Al concentration in the bulk apical root tissues, nor was it related to changes in the Al bound to the cell wall. We also examined changes in other properties of the cell wall, including the CEC, degree of methylation and changes in the concentration of pectin, hemicellulose and cellulose. We noted that concentrations of intracellular Al decreased by approx. 50 % at the same time that the root elongation rate improved after 24–48 h. Using CCCP as a metabolic inhibitor, we found that the intracellular Al concentration increased approx. 14-fold and that the CCCP prevented the subsequent decrease in intracellular Al. Conclusions Our results indicate that the delayed expression of Al resistance was not associated with the Al concentration in the bulk apical root tissues or bound to the cell wall, nor was it associated with changes in other properties of the cell wall. Rather, signal grass has an energy-dependent Al exclusion mechanism, and this mechanism requires 24–48 h to exclude Al from the intracellular compartment.


2018 ◽  
Vol 9 ◽  
Author(s):  
Marine Blondeau ◽  
Martin Sachse ◽  
Claire Boulogne ◽  
Cynthia Gillet ◽  
Jean-Michel Guigner ◽  
...  

2016 ◽  
Vol 101 (1) ◽  
pp. 331-340 ◽  
Author(s):  
Nobuyuki Yoshida ◽  
Takanori Yano ◽  
Kaori Kedo ◽  
Takuya Fujiyoshi ◽  
Rina Nagai ◽  
...  

2016 ◽  
Vol 12 (5) ◽  
pp. 1101-1114 ◽  
Author(s):  
Himanshu Malhotra ◽  
Navdeep Sheokand ◽  
Santosh Kumar ◽  
Anoop S. Chauhan ◽  
Manoj Kumar ◽  
...  

2016 ◽  
Vol 310 (1) ◽  
pp. F57-F67 ◽  
Author(s):  
L. J. Martínez-Guerrero ◽  
K. K. Evans ◽  
W. H. Dantzler ◽  
S. H. Wright

Secretion of organic cations (OCs) across renal proximal tubules (RPTs) involves basolateral OC transporter (OCT)2-mediated uptake from the blood followed by apical multidrug and toxin extruder (MATE)1/2-mediated efflux into the tubule filtrate. Whereas OCT2 supports electrogenic OC uniport, MATE is an OC/H+ exchanger. As assessed by epifluorescence microscopy, cultured Chinese hamster ovary (CHO) cells that stably expressed human MATE1 accumulated the fluorescent OC N, N, N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA) in the cytoplasm and in a smaller, punctate compartment; accumulation in human OCT2-expressing cells was largely restricted to the cytoplasm. A second intracellular compartment was also evident in the multicompartmental kinetics of efflux of the prototypic OC [3H]1-methyl-4-phenylpyridinium (MPP) from MATE1-expressing CHO cells. Punctate accumulation of NBD-MTMA was markedly reduced by coexposure of MATE1-expressing cells with 5 μM bafilomycin (BAF), an inhibitor of V-type H+-ATPase, and accumulation of [3H]MPP and [3H]NBD-MTMA was reduced by >30% by coexposure with 5 μM BAF. BAF had no effect on the initial rate of MATE1-mediated uptake of NBD-MTMA, suggesting that the influence of BAF was a secondary effect involving inhibition of V-type H+-ATPase. The accumulation of [3H]MPP by isolated single nonperfused rabbit RPTs was also reduced >30% by coexposure to 5 μM BAF, suggesting that the native expression in RPTs of MATE protein within endosomes can increase steady-state OC accumulation. However, the rate of [3H]MPP secretion by isolated single perfused rabbit RPTs was not affected by 5 μM BAF, suggesting that vesicles loaded with OCs+ are not likely to recycle into the apical plasma membrane at a rate sufficient to provide a parallel pathway for OC secretion.


Sign in / Sign up

Export Citation Format

Share Document