A study on photophysical and photodynamic properties of donor–acceptor BODIPY complexes: Correlation between singlet oxygen quantum yield and singlet-triplet energy gap

2021 ◽  
Vol 187 ◽  
pp. 109051
Author(s):  
Jae Moon Lee ◽  
Seongsoo Kang ◽  
Tae Gyu Hwang ◽  
Hong Mo Kim ◽  
Woo Sung Lee ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Shao ◽  
Chuang Yang ◽  
Fangyuan Li ◽  
Jiahe Wu ◽  
Nan Wang ◽  
...  

AbstractSimultaneous photothermal therapy (PTT) and photodynamic therapy (PDT) is beneficial for enhanced cancer therapy due to the synergistic effect. Conventional materials developed for synergistic PTT/PDT are generally multicomponent agents that need complicated preparation procedures and be activated by multiple laser sources. The emerging monocomponent diketopyrrolopyrrole (DPP)-based conjugated small molecular agents enable dual PTT/PDT under a single laser irradiation, but suffer from low singlet oxygen quantum yield, which severely restricts the therapeutic efficacy. Herein, we report acceptor-oriented molecular design of a donor–acceptor–donor (D–A–D) conjugated small molecule (IID-ThTPA)-based phototheranostic agent, with isoindigo (IID) as selective acceptor and triphenylamine (TPA) as donor. The strong D–A strength and narrow singlet–triplet energy gap endow IID-ThTPA nanoparticles (IID-ThTPA NPs) high mass extinction coefficient (18.2 L g−1 cm−1), competitive photothermal conversion efficiency (35.4%), and a dramatically enhanced singlet oxygen quantum yield (84.0%) comparing with previously reported monocomponent PTT/PDT agents. Such a high PTT/PDT performance of IID-ThTPA NPs achieved superior tumor cooperative eradicating capability in vitro and in vivo.


2019 ◽  
Vol 55 (10) ◽  
pp. 1450-1453 ◽  
Author(s):  
Chengkai Zhang ◽  
Yanqian Zhao ◽  
Dandan Li ◽  
Jiejie Liu ◽  
Heguo Han ◽  
...  

Two-photon active photosensitizers showed relatively strong intersystem crossing facilitating 1O2 generation and cell apoptosis with near-infrared excitation.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1735 ◽  
Author(s):  
Tae Hui Kwon ◽  
Soon Ok Jeon ◽  
Masaki Numata ◽  
Hasup Lee ◽  
Yeon Sook Chung ◽  
...  

The short material lifetime of thermally activated delayed fluorescence (TADF) technology is a major obstacle to the development of economically feasible, highly efficient, and durable devices for commercial applications. TADF devices are also hampered by insufficient operational stability. In this paper, we report the design, synthesis, and evaluation of new TADF molecules possessing a sterically twisted skeleton by interlocking donor and acceptor moieties through a C–C bond. Compared to C–N-bond TADF molecules, such as CPT2, the C–C-bond TADF molecules showed a large dihedral angle increase by more than 30 times and a singlet–triplet energy-gap decrease to less than 0.22 eV because of the steric hindrance caused by the direct C–C bond connection. With the introduction of a dibenzofuran core structure, devices comprising BMK-T317 and BMK-T318 exhibited a magnificent display performance, especially their external quantum efficiencies, which were as high as 19.9% and 18.8%, respectively. Moreover, the efficiency roll-off of BMK-T318 improved significantly (26.7%). These results indicate that stability of the material can be expected through the reduction of their singlet–triplet splitting and the precise adjustment of dihedral angles between the donor–acceptor skeletons.


1997 ◽  
Vol 52 (12) ◽  
pp. 837-842 ◽  
Author(s):  
Hans E. Wilhelm ◽  
Horst Gebert ◽  
Wolfgang Regenstein

The dependence of fluorescence quantum yields and S1-lifetimes of donor-acceptor substituted trans-stilbenes on temperature was measured in the temperature range from 298 to 100 K, using solutions of stilbenes in 3-methylpentane (3-MP). Measurements of fluorescence and phosphorescence spectra show that the triplet energy is almost independent of the acceptor. The S1-energy and the S1-T1 energy gap decrease with increasing acceptor strength. For all compounds intersystem crossing (ISC) S1 → T1, is negligible


2015 ◽  
Vol 3 (36) ◽  
pp. 9469-9478 ◽  
Author(s):  
Mingzhi Sun ◽  
Liping Zhu ◽  
Wenjing Kan ◽  
Ying Wei ◽  
Dongge Ma ◽  
...  

A triangle-shaped D–A–A molecule PCImbPO with unusually high triplet energy of 3.0 eV, enhanced D–A electronic coupling and separated FMO and triplet locations is described.


2020 ◽  
Vol 8 (24) ◽  
pp. 8305-8319
Author(s):  
Muhammad Imran ◽  
Ahmed M. El-Zohry ◽  
Clemens Matt ◽  
Maria Taddei ◽  
Sandra Doria ◽  
...  

Efficient triplet state production (singlet oxygen quantum yield: 80%) by SOCT-ISC was observed for a perylene–naphthalimide compact electron donor/acceptor dyad.


2021 ◽  
Author(s):  
Stephanie Montanaro ◽  
Piotr Pander ◽  
Mark Elsegood ◽  
Simon Teat ◽  
Andrew Bond ◽  
...  

A fundamental problem facing thermally activated delayed fluorescence (TADF) is to overcome the paradox of efficient electronic transitions and a narrow singlet-triplet energy gap (ΔEST) in a single luminophore. We present a quinoxaline-based TADF iptycene as the first clear example that homoconjugation can be harnessed as a viable design strategy toward this objective. Homoconjugation was introduced in an established TADF luminophore by trimerization through an iptycene core. This homoconjugation was confirmed by electrochemistry. As a direct consequence of homoconjugation we observed synergistic improvements to photoluminescence quantum yield (ΦPL), radiative rate of singlet decay (krS), delayed fluorescence lifetime (τTADF), and rate of reverse intersystem crossing (krISC), while narrowing the ΔEST. The cooperative enhancement is rationalised with TD-DFT calculations including spin-orbit coupling (SOC). A facile synthesis of this system, and the ubiquity of the pyrazine motif in state-of-the-art TADF materials across the electromagnetic spectrum, leads to a great potential for generality.


Author(s):  
Anja Busemann ◽  
Ingrid Flaspohler ◽  
Xue-Quan Zhou ◽  
Claudia Schmidt ◽  
Sina K. Goetzfried ◽  
...  

AbstractThe known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2’:6’,2″-terpyridine, bpy = 2,2’-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document