scholarly journals Surgical Treatment of Subchondral Bone Cysts of the Acetabulum With Calcium Phosphate Bone Substitute Material in Patients Without Advanced Arthritic Hips

2020 ◽  
Vol 9 (9) ◽  
pp. e1375-e1379
Author(s):  
Felipe Bessa ◽  
Jonathan Rasio ◽  
Alexander Newhouse ◽  
Benedict U. Nwachukwu ◽  
Shane Nho
2012 ◽  
Vol 529-530 ◽  
pp. 300-303 ◽  
Author(s):  
R.P. Félix Lanao ◽  
J.W.M. Hoekstra ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
A.S. Plachokova ◽  
...  

Periodontitis is one of the most common inflammatory diseases, which can lead to early tooth loss. The conventional treatment of periodontitis is to arrest the disease progression. Most reconstructive procedures involve application of bone substitutes, barrier membranes or a combination of both into the bony defects. Calcium phosphate cements (CPCs) are the predominant type of bone substitute material used for reasons of injectability and hence perfect filling potential for bone defects. Recently, injectable apatitic CPCs demonstrated to be more rapidly degradable when combined with poly (lactic-co-glycolic) acid (PLGA) microspheres. Further, PLGA microspheres can be used as a delivery vehicle for growth factors. In this study, the performance of injectable CPCs as a bone substitute material for alveolar bone defects created in Beagle dogs was evaluated. Four CPC-formulations were generated by incorporating hollow or dense PLGA microspheres, either or not loaded with the growth factors (platelet derived growth factor (PDGF) and insulin-like growth factor (IGF). Implantation period was 8 weeks. Bone formation was based on histological and histomorphometrical evaluation. The results demonstrated that filling alveolar bone defects with CPC-dense PLGA revealed significant more bone formation compared to CPC-hollow PLGA either or not loaded with IGF and PDGF. In summary, we conclude that injectable CPC-dense PLGA composites proved to be the most suitable material for a potential use as off the shelf material due to its good biocompatibility, enhanced degradability and subsequent bone formation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jacob T. Landeck ◽  
William R. Walsh ◽  
Rema A. Oliver ◽  
Tian Wang ◽  
Mallory R. Gordon ◽  
...  

Abstract Background Calcium phosphate-based bone graft substitutes are used to facilitate healing in bony defects caused by trauma or created during surgery. Here, we present an injectable calcium phosphate-based bone void filler that has been purposefully formulated with hyaluronic acid to offer a longer working time for ease of injection into bony defects that are difficult to access during minimally invasive surgery. Methods The bone substitute material deliverability and physical properties were characterized, and in vivo response was evaluated in a critical size distal femur defect in skeletally mature rabbits to 26 weeks. The interface with the host bone, implant degradation, and resorption were assessed with time. Results The calcium phosphate bone substitute material could be injected as a paste within the working time window of 7–18 min, and then self-cured at body temperature within 10 min. The material reached a maximum ultimate compressive strength of 8.20 ± 0.95 MPa, similar to trabecular bone. The material was found to be biocompatible and osteoconductive in vivo out to 26 weeks, with new bone formation and normal bone architecture observed at 6 weeks, as demonstrated by histological evaluation, microcomputed tomography, and radiographic evaluation. Conclusions These findings show that the material properties and performance are well suited for minimally invasive percutaneous delivery applications.


2013 ◽  
Vol 16 (4) ◽  
pp. 703-712 ◽  
Author(s):  
Juliana Marchi ◽  
Christiane Ribeiro ◽  
Ana Helena de Almeida Bressiani ◽  
Márcia Martins Marques

Author(s):  
M. P. Hofmann ◽  
U. Gbureck ◽  
C. O. Duncan ◽  
M. S. Dover ◽  
J. E. Barralet

2005 ◽  
Vol 288-289 ◽  
pp. 557-560 ◽  
Author(s):  
H. Wang ◽  
Xiao Ping Wang ◽  
Jian Dong Ye ◽  
Ying Jun Wang ◽  
Ping Gen Rao

A calcium phosphate bone substitute material was prepared and its rheological behavior and injectability were studied in this work. The effects of temperature, L/P ratio and adjuvant on the rheological properties and injectability of the pastes were discussed. The results show that the calcium phosphate bone substitute material is injectable with good fluidity and is suitable for the clinical applications. The rheological behavior and injectability of the bone substitute material can be improved by adding adjuvants and optimizing L/P ratio.


Sign in / Sign up

Export Citation Format

Share Document