scholarly journals Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT)

EBioMedicine ◽  
2021 ◽  
Vol 64 ◽  
pp. 103240
Author(s):  
Shuguang Zuo ◽  
Min Wei ◽  
Bohao He ◽  
Anxian Chen ◽  
Shiqun Wang ◽  
...  
npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A317-A317
Author(s):  
Dobrin Draganov ◽  
Antonio Santidrian ◽  
Ivelina Minev ◽  
Duong Nguyen ◽  
Dmitriy Zamarin ◽  
...  

BackgroundThe development of oncolytic viruses for the treatment of cancer has been significantly hampered by their rapid clearance in circulation due to complement and antibody-mediated neutralization. In our recent first-in-human Phase I clinical trial, we evaluated the safety and feasibility of our approach to enhance virus delivery and improve tumor targeting by utilizing an autologous stromal vascular fraction (SVF) based cell delivery system. Patient sample analysis demonstrated that patients could be stratified based on the level of vaccinia virus amplification in vivo, as evidenced by analysis of persistent viral DNA in the blood.MethodsIn the current study, we evaluated the immunomodulatory potential of vaccinia virus delivered by autologous stromal vascular fraction (SVF)-derived cells and attempted to identify immunological correlates of successful vaccinia virus amplification in vivo. To this end, we performed an extensive time-course analysis of cytokines in patients‘ plasma as well as various peripheral blood immune subpopulations using Luminex multi-analyte profiling and multiparameter flow cytometry, respectively. We also analyzed the impact of this therapeutic approach on the innate and adaptive immune subpopulations, including NK cells, myeloid cells, as well as effector, regulatory and memory T cells.ResultsTherapy with SFV-delivered oncolytic vaccinia virus induced a coordinated activation of cytokine, T cell and NK cell responses in patients as early as 1 day after treatment, which peaked around 1-week and lasted for up to 1-month post treatment. The ability of the oncolytic virus to effectively amplify in cancer patients correlated with significant changes of multiple innate (NK) and adaptive (T cell) immunological parameters. Interestingly, patient stratification into groups with transient versus persistent viral DNA was linked to opposing and mutually exclusive patterns of robust activation of NK versus T cell responses, respectively. Our study also identified intriguing cytokine and immune subset frequency signatures present at baseline and associated with successful amplification and persistence of oncolytic vaccinia virus in vivo.ConclusionsOverall, this study establishes the timeline of treatment-related immunological changes and identifies biomarkers present at baseline and potential immunological correlates associated with the persistence of virus amplification in vivo. Therefore, our findings provide new insights into the role of interpatient immunological variability and will contribute to the proper evaluation of the therapeutic potency of oncolytic virotherapy in future clinical trials.


Nephron ◽  
1987 ◽  
Vol 46 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Gideon Goldstein

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Pritesh Desai ◽  
Vikas Tahiliani ◽  
Georges Abboud ◽  
Jessica Stanfield ◽  
Shahram Salek-Ardakani

ABSTRACTRespiratory infection with vaccinia virus (VacV) elicits robust CD8+T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+effector T cell responses remains poorly defined. We used Batf3−/−mice to investigate the impact of CD103+and CD8α+dendritic cell (DC) deficiency on anti-VacV CD8+T cell responses. We found that Batf3−/−mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+T cells in the draining lymph nodes of Batf3−/−mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCEDuring respiratory infection with vaccinia virus (VacV), a member ofPoxviridaefamily, CD8+T cells play important role in resolving the primary infection. Effector CD8+T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.


2004 ◽  
Vol 64 (22) ◽  
pp. 8411-8419 ◽  
Author(s):  
Fumito Ito ◽  
Qiao Li ◽  
Andrew B. Shreiner ◽  
Ryuji Okuyama ◽  
Maria N. Jure-Kunkel ◽  
...  

1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


1995 ◽  
Vol 181 (6) ◽  
pp. 2007-2015 ◽  
Author(s):  
S Matsuoka ◽  
Y Asano ◽  
K Sano ◽  
H Kishimoto ◽  
I Yamashita ◽  
...  

A monoclonal antibody, RE2, raised by immunizing a rat with cell lysate of a mouse T cell clone, was found to directly kill interleukin 2-dependent T cell clones without participation of serum complement. Fab fragments of RE2 had no cytolytic activity, while the cross-linking of Fab fragments with anti-rat immunoglobulin reconstituted the cytotoxicity. The cytotoxicity was temperature dependent: the antibody could kill target cells at 37 degrees C but not at 0 degrees C. Sodium azide, ethylenediaminetetraacetic acid, and forskolin did not affect the cytolytic activity of RE2, while the treatment of target cells with cytochalasin B and D completely blocked the activity. This suggested that the cell death involves a cytoskeleton-dependent active process. Giant holes on the cell membrane were formed within 5 minutes after the treatment with RE2, as observed by scanning electron microscopy. There was no indication of DNA fragmentation nor swelling of mitochondria during the cytolysis, suggesting that the cell death is neither apoptosis nor typical necrosis. The antibody also killed T cell lymphomas and T and B cell hybridomas only when these cells were preactivated with concanavalin A, lipopolysaccharide, or phorbol myristate acetate. Preactivated peripheral T and B cells were sensitive to the cytotoxicity of RE2, while resting T and B cells were insensitive. These results provide evidence for a novel pathway of cell death of activated lymphocytes by membrane excitation.


Sign in / Sign up

Export Citation Format

Share Document